Conceptual and computational models have been advanced that propose that perceptual disturbances in psychosis, such as hallucinations, may arise due to a disruption in the balance between bottom-up (ie sensory) and top-down (ie from higher brain areas) information streams in sensory cortex. However, the neural activity underlying this hypothesized alteration remains largely unexplored. Pharmacological N-methyl-d-aspartate receptor (NMDAR) antagonism presents an attractive model to examine potential changes as it acutely recapitulates many of the symptoms of schizophrenia including hallucinations, and NMDAR hypofunction is strongly implicated in the pathogenesis of schizophrenia as evidenced by large-scale genetic studies.
View Article and Find Full Text PDFDendrites are the main recipients of synaptic inputs and are important sites that determine neurons' input-output functions. This review focuses on thin neocortical dendrites, which receive the vast majority of synaptic inputs in cortex but also have specialized electrogenic properties. We present a simplified working-model biophysical scheme of pyramidal neurons that attempts to capture the essence of their dendritic function, including the ability to behave under plausible conditions as dynamic computational subunits.
View Article and Find Full Text PDFNetworks that produce persistent firing in response to novel input patterns are thought to be important in working memory and other information storage functions. One possible mechanism for maintaining persistent firing is dendritic voltage bistability in which the depolarized state depends on the voltage dependence of the NMDA conductance at recurrent synapses. In previous models, the hyperpolarized state is dependent on voltage-independent conductances, including GABA(A).
View Article and Find Full Text PDFGlutamatergic inputs clustered over approximately 20-40 microm can elicit local N-methyl-D-aspartate (NMDA) spike/plateau potentials in terminal dendrites of cortical pyramidal neurons, inspiring the notion that a single terminal dendrite can function as a decision-making computational subunit. A typical terminal basal dendrite is approximately 100-200 microm long: could it function as multiple decision-making subunits? We test this by sequential focal stimulation of multiple sites along terminal basal dendrites of layer 5 pyramidal neurons in rat somatosensory cortical brain slices, using iontophoresis or uncaging of brief glutamate pulses. There was an approximately sevenfold spatial gradient in average spike/plateau amplitude measured at the soma, from approximately 3 mV for distal inputs to approximately 23 mV for proximal inputs.
View Article and Find Full Text PDFPersistent neural activity refers to a sustained change in action potential discharge that long outlasts a stimulus. It is found in a diverse set of brain regions and organisms and several in vitro systems, suggesting that it can be considered a universal form of circuit dynamics that can be used as a mechanism for short-term storage and accumulation of sensory or motor information. Both single cell and network mechanisms are likely to co-operate in generating persistent activity in many brain areas.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2004
In a companion paper, we reported that the goldfish oculomotor neural integrator could be trained to instability or leak by rotating the visual surround with a velocity proportional to +/- horizontal eye position, respectively. Here we analyze changes in the firing rate behavior of neurons in area I in the caudal brainstem, a central component of the oculomotor neural integrator. Persistent firing could be detuned to instability and leak, respectively, along with fixation behavior.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2004
Persistent neural firing is of fundamental importance to working memory and other brain functions because it allows information to be held "online" following an input and to be integrated over time. Many models of persistent activity rely on some kind of positive feedback internal to the neural circuit concerned; however, too much feedback causes runaway firing (instability), and too little results in loss of persistence (leak). This parameter sensitivity leads to the hypothesis that the brain uses an error signal (external feedback) to tune the stability of persistent firing by adjusting the amount of internal feedback.
View Article and Find Full Text PDFShort-term memory is often correlated with persistent changes in neuronal firing rates in response to transient inputs. We model the persistent maintenance of an analog eye position signal by an oculomotor neural integrator receiving transient eye movement commands. Previous models of this network rely on precisely tuned positive feedback with <1% tolerance to mistuning, or use neurons that exhibit large discontinuities in firing rate with small changes in eye position.
View Article and Find Full Text PDFPersistent firing in response to a brief stimulus is a neural correlate of short-term memory in a variety of systems. In the oculomotor neural integrator, persistent firing that encodes eye position is maintained in response to transient saccadic eye-velocity commands. To a first approximation, firing rates in the integrator vary linearly with eye position.
View Article and Find Full Text PDFThe oculomotor system produces eye-position signals during fixations and head movements by integrating velocity-coded saccadic and vestibular inputs. A previous analysis of nucleus prepositus hypoglossi (nph) lesions in monkeys found that the integration time constant for maintaining fixations decreased, while that for the vestibulo-ocular reflex (VOR) did not. On this basis, it was concluded that saccadic inputs are integrated by the nph, but that the vestibular inputs are integrated elsewhere.
View Article and Find Full Text PDF