Challenges in obtaining efficient transduction of brain and spinal cord following systemic AAV delivery have led to alternative administration routes being used in clinical trials that directly infuse the virus into the CNS. However, data comparing different direct AAV injections into the brain remain limited making it difficult to choose optimal routes. Here we tested both AAV9-egfp and AAV9-fLuc delivery via intrastriatal (IST), intracisterna magna (ICM) and lumbar intrathecal (LIT) routes in adult rats and assessed vector distribution and transduction in brain, spinal cord and peripheral tissues.
View Article and Find Full Text PDFEverolimus is a novel macrolide immunosuppressant developed for the prophylaxis of allogeneic renal or cardiac transplant rejection. Treatments with immunosuppressants are often associated with organ toxicity that is linked to high organ exposure. Therefore, gaining insight into the pharmacokinetics of everolimus in various organs is highly desirable especially those organs of therapeutic interest or those that pose safety concerns.
View Article and Find Full Text PDFFTY720 (2-amino-2[2-(-4-octylphenyl)ethyl]propane-1,3-diol hydrochloride) is a new sphingosine-1-phosphate receptor agonist being developed for multiple sclerosis and prevention of solid organ transplant rejection. A physiologically based pharmacokinetic model was developed to predict the concentration of FTY720 in various organs of the body. Single oral and intravenous doses of FTY720 were administered to male Wistar rats, with blood and tissue sampling over 360 h analyzed by liquid chromatography/tandem mass spectrometry.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
March 2005
Although it is routine to predict the blood or plasma pharmacokinetics of compounds for man based upon preclinical studies, the real value of such predictions only comes when linked to drug effects. In the first example, the immunomodulator, FTY720, the first sphingosine-1-phosphate receptor agonist, stimulates the sequestration of lymphocytes into lymph nodes thus removing cells from blood circulation. A prior physiology-based pharmacokinetic model fitted the concentration-time course of FTY720 in rats.
View Article and Find Full Text PDFThe pharmacokinetics and cell trafficking dynamics of 2-amino-2-[2-(4-octylphenyl)ethyl]propane-1,3-diol hydrochloride (FTY720), a novel immunosuppressive agent, were examined in cynomolgus monkeys (three males and three females). After single doses of 0.1 mg/kg p.
View Article and Find Full Text PDF