Viruses as obligate intracellular parasites are limited by their small genome. They have thus developed various strategies to maximize viral fitness with a limited amount of coding information. Among these strategies is the use of the same viral protein for multiple functions.
View Article and Find Full Text PDFAs the world is experiencing the pandemic of SARS-CoV-2 responsible for COVID-19, one can wonder if members of other family of viruses could possibly emerge. Can such viruses establish a worldwide distribution with consequences similar to SARS-CoV-2? One such threat is the possible emergence of pathogenic reoviruses, especially by zoonotic transmission. Reoviruses are ubiquitous viruses exhibiting a worldwide distribution and various strains or isolates are found in many mammalian species and other vertebrates.
View Article and Find Full Text PDFAs the world is experiencing the pandemic of SARS-CoV-2 responsible for COVID-19, one can wonder if members of other family of viruses could possibly emerge. Can such viruses establish a worldwide distribution with consequences similar to SARS-CoV-2? One such threat is the possible emergence of pathogenic reoviruses, especially by zoonotic transmission. Reoviruses are ubiquitous viruses exhibiting a worldwide distribution and various strains or isolates are found in many mammalian species and other vertebrates.
View Article and Find Full Text PDFMammalian orthoreovirus (MRV) is a double-stranded RNA virus from the family that infects a large range of mammals, including humans. Recently, studies have shown that MRV alters cellular alternative splicing (AS) during viral infection. The structural protein μ2 appears to be the main determinant of these AS modifications by decreasing the levels of U5 core components EFTUD2, PRPF8, and SNRNP200 during infection.
View Article and Find Full Text PDFThe spliceosome is a massive ribonucleoprotein structure composed of five small nuclear ribonucleoprotein (snRNP) complexes that catalyze the removal of introns from pre-mature RNA during constitutive and alternative splicing. EFTUD2, PRPF8, and SNRNP200 are core components of the U5 snRNP, which is crucial for spliceosome function as it coordinates and performs the last steps of the splicing reaction. Several studies have demonstrated U5 snRNP proteins as targeted during viral infection, with a limited understanding of their involvement in virus-host interactions.
View Article and Find Full Text PDFIt has been previously shown that amino acid polymorphisms in reovirus proteins μ2 and λ1 are associated with differing levels of interferon induction. In the present study, viruses carrying these polymorphisms in either or both proteins, were further studied. The two viral determinants exert a synergistic effect on the control of β-interferon induction at the protein and mRNA level, with a concomitant increase in RIG-I.
View Article and Find Full Text PDFHuman T-cell leukemia virus type 1 is the causative agent of HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T-cell leukemia-lymphoma (ATL). The HTLV-1 basic leucine zipper factor (HBZ) has been associated to the cancer-inducing properties of this virus, although the exact mechanism is unknown. In this study, we identified nucleophosmin (NPM1/B23) as a new interaction partner of HBZ.
View Article and Find Full Text PDFMammalian orthoreovirus (MRV) is a double-stranded RNA virus from the Reoviridae family presenting a promising activity as an oncolytic virus. Recent studies have underlined MRV's ability to alter cellular alternative splicing (AS) during infection, with a limited understanding of the mechanisms at play. In this study, we investigated how MRV modulates AS.
View Article and Find Full Text PDFLentivirus genomes code for a regulatory protein essential for virus replication termed Rev. The Rev protein binds to partially spliced and unspliced viral RNAs and mediates their nuclear export. Therefore, Rev possesses functional domains that enable its shuttling between the cytoplasm and the nucleus.
View Article and Find Full Text PDFVirologie (Montrouge)
October 2019
Although mammalian reovirus exhibits only limited pathogenicity in humans, it has been, and still remains, instrumental in studies of viral replication and pathogenesis. Generally considered as cytolytic, this virus can sometimes establish long-term persistent infections in tissue culture. In fact, in this context, it constitutes one widely used model to demonstrate coevolution between virus and host cells.
View Article and Find Full Text PDFVirologie (Montrouge)
October 2019
Although mammalian reovirus exhibits only limited pathogenicity in humans, it has been, and still remains, instrumental in studies of viral replication and pathogenesis. Generally considered as cytolytic, this virus can sometimes establish long-term persistent infections in tissue culture. In fact, in this context, it constitutes one widely used model to demonstrate coevolution between virus and host cells.
View Article and Find Full Text PDFThe lentiviral Rev protein, which is a regulatory protein essential for virus replication, has been first studied in the human immunodeficiency virus type 1 (HIV-1). The main function of Rev is to mediate the nuclear exportation of viral RNAs. To fulfill its function, Rev shuttles between the cytoplasm and the nucleus.
View Article and Find Full Text PDFAs with most viruses, mammalian reovirus can be recognized and attacked by the host-cell interferon response network. Similarly, many viruses have developed resistance mechanisms to counteract the host-cell response at different points of this response. Reflecting the complexity of the interferon signaling pathways as well as the resulting antiviral response, viruses can-and often have-evolved many determinants to interfere with this innate immune response and allow viral replication.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
September 2019
Upon viral infection, a tug of war is triggered between host cells and viruses to maintain/gain control of vital cellular functions, the result of which will ultimately dictate the fate of the host cell. Among these essential cellular functions, alternative splicing (AS) is an important RNA maturation step that allows exons, or parts of exons, and introns to be retained in mature transcripts, thereby expanding proteome diversity and function. AS is widespread in higher eukaryotes, as it is estimated that nearly all genes in humans are alternatively spliced.
View Article and Find Full Text PDFIn a previous study, a mammalian orthoreovirus mutant was isolated based on its increased ability to infect interferon-defective Vero cells and was referred to as Vero-cells-adapted virus (VeroAV). This virus exhibits reduced ability to resist the antiviral effect of interferon. In the present study, the complete genome sequence of VeroAV was first determined.
View Article and Find Full Text PDFAt the end of my doctoral studies, in 1988, I published a review article on the major steps of transcription and translation during the mammalian reovirus multiplication cycle, a topic that still fascinates me 30 years later. It is in the nature of scientific research to generate further questioning as new knowledge emerges. Our understanding of these fascinating viruses thus remains incomplete but it seemed appropriate at this moment to look back and reflect on our progress and most important questions that still puzzle us.
View Article and Find Full Text PDFIn the course of previous works, it was observed that the virus laboratory stock (T3D) differs in sequence from the virus encoded by the ten plasmids currently in use in many laboratories (T3D), and derived from a different original virus stock. Seven proteins are affected by these sequence differences. In the present study, replication of T3D was shown to be more sensitive to the antiviral effect of interferon.
View Article and Find Full Text PDFAlternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model.
View Article and Find Full Text PDFIn the last few years, the development of a plasmid-based reverse genetics system for mammalian reovirus has allowed the production and characterization of mutant viruses. This could be especially significant in the optimization of reovirus strains for virotherapeutic applications, either as gene vectors or oncolytic viruses. The genome of a mutant virus exhibiting increased sensitivity to interferon was completely sequenced and compared with its parental virus.
View Article and Find Full Text PDFIn a recent study, the serotype 3 Dearing strain of mammalian orthoreovirus was adapted to Vero cells; cells that exhibit a limited ability to support the early steps of reovirus uncoating and are unable to produce interferon as an antiviral response upon infection. The Vero cell-adapted virus (VeroAV) exhibits amino acids substitutions in both the σ1 and μ1 outer capsid proteins but no changes in the σ3 protein. Accordingly, the virus was shown not to behave as a classical uncoating mutant.
View Article and Find Full Text PDFEstablishment of viral persistence in cell culture has previously led to the selection of mammalian reovirus mutants, although very few of those have been characterized in details. In the present study, reovirus was adapted to Vero cells that, in contrast to classically-used L929 cells, are inefficient in supporting the early steps of reovirus uncoating and are also unable to produce interferon as an antiviral response once infection occurs. The Vero cell-adapted reovirus exhibits amino acids substitutions in both the σ1 and μ1 proteins.
View Article and Find Full Text PDFMammalian reoviruses exhibit a large host range and infected cells are generally killed; however, most studies examined only a few cell types and host species, and are probably not representative of all possible interactions between virus and host cell. Many questions thus remain concerning the nature of cellular factors that affect viral replication and cell death. In the present work, it was observed that replication of the classical mammalian reovirus serotype 3 Dearing in a bat epithelial cell line, Tb1.
View Article and Find Full Text PDFMany temperature-sensitive mutants have been isolated in early studies of mammalian reovirus. However, the biological properties and nature of the genetic alterations remain incompletely explored for most of these mutants. The mutation harbored by the tsI138 mutant was already assigned to the L3 gene encoding the λ1 protein.
View Article and Find Full Text PDF