Significance: Passive quadrature demultiplexing allows full-range optical coherence tomography (FR-OCT). However, imperfections in the wavelength- and frequency-response of the demodulation circuits can cause residual mirror artifacts, which hinder high-quality imaging on both sides of zero delay.
Aim: We aim at achieving high mirror artifact extinction by calibrated postprocessing of the FR-OCT signal.
Selenium detection and removal from industrial and mining effluents have gained attention recently due to the negative effects of this trace element on aquatic life. However, the current methods for the detection of selenium in effluents are off-line by nature. In order to fill this gap, we investigated the use of laser ablation-assisted laser-induced fluorescence (LA-LIF) to measure trace amount of selenium in aqueous solutions.
View Article and Find Full Text PDFConcrete methods are lacking to examine angioplasty simulation results. For the first time, we explored the application of intravascular optical coherence tomography (IVOCT) to experimentally validate results obtained from finite-element simulation of angioplasty balloon deployment. In order to simulate each experimental scenario, IVOCT images were used to create initial geometrical models for the balloon and the phantoms.
View Article and Find Full Text PDFAnalysis of intravascular optical coherence tomography (IVOCT) data has potential for real-time in vivo plaque classification. We developed a processing pipeline on a three-dimensional local region of support for estimation of optical properties of atherosclerotic plaques from coronary artery, IVOCT pullbacks. Using realistic coronary artery disease phantoms, we determined insignificant differences in mean and standard deviation estimates between our pullback analyses and more conventional processing of stationary acquisitions with frame averaging.
View Article and Find Full Text PDFIn this paper we present a new process for assessing optical properties of tissues from 3D pullbacks, the standard clinical acquisition method for iOCT data. Our method analyzes a volume of interest (VOI) consisting of about 100 A-lines spread across the angle of rotation () and along the artery, . The new 3D method uses catheter correction, baseline removal, speckle noise reduction, alignment of A-line sequences, and robust estimation.
View Article and Find Full Text PDFWe propose and test various strategies for the creation of artery phantoms mimicking different kinds of diseased arteries when imaged by intravascular optical coherence tomography (IVOCT). We first review the method for making healthy artery phantoms. We then describe the procedure to fabricate diseased artery phantoms with intima thickening, lipid pool, thin-capped fibroatheroma, calcification, and restenosis (homogeneous and layered) after stent apposition.
View Article and Find Full Text PDFWe explored the potential of intravascular optical coherence tomography (IVOCT) to assess deformation during angioplasty balloon inflation. Using a semi-compliant balloon and artery phantoms, we considered two experimental scenarios. The goal for the first scenario was to investigate if variation in the elasticity of the structure surrounding the balloon could be sensed by IVOCT monitoring.
View Article and Find Full Text PDFWe review the development of phantoms for optical coherence tomography (OCT) designed to replicate the optical, mechanical and structural properties of a range of tissues. Such phantoms are a key requirement for the continued development of OCT techniques and applications. We focus on phantoms based on silicone, fibrin and poly(vinyl alcohol) cryogels (PVA-C), as we believe these materials hold the most promise for durable and accurate replication of tissue properties.
View Article and Find Full Text PDFWe demonstrate the efficiency of the convolution using an optimized Kaiser-Bessel window to resample nonlinear data in wavenumber for Fourier-domain optical coherence tomography (OCT). We extend our previous experimental demonstration that was performed with a specific swept-source nonlinearity. The method is now applied to swept-source OCT data obtained for various simulated swept-source nonlinearities as well as spectral-domain OCT data obtained from both simulations and experiments.
View Article and Find Full Text PDFWe report on real-time control of balloon inflation inside porcine arteries. In the first step, experiments were done in a coronary artery of an excised heart. In the second step, experiments were done in a beating heart setup providing conditions very close to in vivo conditions without the complications.
View Article and Find Full Text PDFA method is proposed to achieve computerized control of angioplasty balloon inflation, based on feedback from intravascular optical coherence tomography (IVOCT). Controlled balloon inflation could benefit clinical applications, cardiovascular research, and medical device industry. The proposed method was experimentally tested for balloon inflation within an artery phantom.
View Article and Find Full Text PDFBiomed Opt Express
September 2011
We present a method to make phantoms of coronary arteries for intravascular optical coherence tomography (IV-OCT). The phantoms provide a calibrated OCT response similar to the layered structure of arteries. The optical properties of each layer are achieved with specific concentrations of alumina and carbon black in a silicone matrix.
View Article and Find Full Text PDFWe present an innovative integration of an intravascular optical coherence tomography probe into a computerized balloon deployment system to monitor the balloon inflation process. The high-resolution intraluminal imaging of the balloon provides a detailed assessment of the balloon quality and, consequently, a technique to improve the balloon manufacturing process. A custom-built swept-source optical coherence tomography system is used for real-time imaging.
View Article and Find Full Text PDFThe advantages and limitations of using a beating heart model in the development of intravascular optical coherence tomography are discussed. The model fills the gap between bench experiments, performed on phantoms and excised arteries, and whole animal in-vivo preparations. The beating heart model is stable for many hours, allowing for extended measurement times and multiple imaging sessions under in-vivo conditions without the complications of maintaining whole-animal preparation.
View Article and Find Full Text PDFWe evaluate various signal processing methods to handle the non-linearity in wavenumber space exhibited by most laser sources for swept-source optical coherence tomography. The following methods are compared for the same set of experimental data: non-uniform discrete Fourier transforms with Vandermonde matrix or with Lomb periodogram, resampling with linear interpolation or spline interpolation prior to fast-Fourier transform (FFT), and resampling with convolution prior to FFT. By selecting an optimized Kaiser-Bessel window to perform the convolution, we show that convolution followed by FFT is the most efficient method.
View Article and Find Full Text PDFWe have developed deformable and durable optical tissue phantoms with a simple and well-defined microstructure including a novel combination of scatterers and a matrix material. These were developed for speckle and elastography investigations in optical coherence tomography, but should prove useful in many other fields. We present in detail the fabrication process which involves embedding silica microspheres in a silicone matrix.
View Article and Find Full Text PDFWe describe an artifact removal setup swept-source optical coherence tomography (OCT) system that enables high-speed full-range imaging. We implement a piezoelectric fiber stretcher to generate a periodic phase shift between successive A-scans, thus introducing a transverse modulation. The depth ambiguity is then resolved by performing a Fourier filtering in the transverse direction before processing the data in the axial direction.
View Article and Find Full Text PDF