Publications by authors named "Guy Godin"

Intraoperative management of bleeding is a critical skill all surgeons must possess. It is, however, very challenging to create a safe and realistic learning environment for its acquisition. In this paper, we propose a simple and efficient approach to integrate blood circulation to computerized surgical simulation systems and allow for real-time processing of punctures, ruptures, and cauterization of blood vessels.

View Article and Find Full Text PDF

Background: The overriding importance of patient safety, the complexity of surgical techniques, and the challenges associated with teaching surgical trainees in the operating room are all factors driving the need for innovative surgical simulation technologies.

Technical Development: Despite these issues, widespread use of virtual reality simulation technology in surgery has not been fully implemented, largely because of the technical complexities in developing clinically relevant and useful models. This article describes the successful use of the NeuroTouch neurosurgical simulator in the resection of a left frontal meningioma.

View Article and Find Full Text PDF

We present a novel approach to fluid simulation over complex dynamic geometry designed for the specific context of virtual surgery simulation. The method combines a surface-based fluid simulation model with a multi-layer depth peeling representation to allow realistic yet efficient simulation of bleeding on complex surfaces undergoing geometry and topology modifications. Our implementation allows for fast fluid propagation and accumulation over the entire scene, and runs on the GPU at a constant low cost that is independent of the amount of blood in the scene.

View Article and Find Full Text PDF

Size and scale issues present a complexity problem in visualizing detailed 3D models built from sensor data. A model of Leonardo da Vinci's Mona Lisa, with its thin pictorial layer, illustrates the need for intuitive real-time processing tools that are seamlessly integrated with a multiresolution visualization environment.

View Article and Find Full Text PDF

The image of an opaque object is created by observing the reflection of the light incident on its surface. The dichromatic reflection model describes the surface reflection as the sum of two components, diffuse and specular terms. The specular reflection component is usually strong in its intensity and polarized significantly compared to the diffuse components.

View Article and Find Full Text PDF