Background: Double-strand break repair (DSBR) is a highly regulated process involving dozens of proteins acting in a defined order to repair a DNA lesion that is fatal for any living cell. Model organisms such as Saccharomyces cerevisiae have been used to study the mechanisms underlying DSBR, including factors influencing its efficiency such as the presence of distinct combinations of microsatellites and endonucleases, mainly by bulk analysis of millions of cells undergoing repair of a broken chromosome. Here, we use a microfluidic device to demonstrate in yeast that DSBR may be studied at a single-cell level in a time-resolved manner, on a large number of independent lineages undergoing repair.
View Article and Find Full Text PDFSince formation of the first proto-eukaryotes, gene repertoire and genome complexity have significantly increased. Among genetic elements responsible for this increase are tandem repeats. Here we describe a genome-wide analysis of large tandem repeats, called megasatellites, in 58 vertebrate genomes.
View Article and Find Full Text PDFMegasatellites are large tandem repeats found in all fungal genomes but especially abundant in the opportunistic pathogen Candida glabrata. They are encoded in genes involved in cell-cell interactions, either between yeasts or between yeast and human cells. In the present work, we have been using an iterative genetic system to delete several Candida glabrata megasatellite-containing genes and found that 2 of them were positively involved in adhesion to epithelial cells, whereas 3 genes negatively controlled adhesion.
View Article and Find Full Text PDFMicrosatellite expansions are the cause of >20 neurological or developmental human disorders. Shortening expanded repeats using specific DNA endonucleases may be envisioned as a gene editing approach. Here, we measured the efficacy of several CRISPR-Cas nucleases to induce recombination within disease-related microsatellites, in Saccharomyces cerevisiae.
View Article and Find Full Text PDFTrinucleotide repeats are a peculiar class of microsatellites whose expansions are responsible for approximately 30 human neurological or developmental disorders. The molecular mechanisms responsible for these expansions in humans are not totally understood, but experiments in model systems such as yeast, transgenic mice, and human cells have brought evidence that the mismatch repair machinery is involved in generating these expansions. The present review summarizes, in the first part, the role of mismatch repair in detecting and fixing the DNA strand slippage occurring during microsatellite replication.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
February 2021
Duplex DNA naturally folds into a right-handed double helix in physiological conditions. Some sequences of unusual base composition may nevertheless form alternative structures, as was shown for many repeated sequences However, evidence for the formation of noncanonical structures in living cells is difficult to gather. It mainly relies on genetic assays demonstrating their function or through genetic instability reflecting particular properties of such structures.
View Article and Find Full Text PDFMicrosatellites are short tandem repeats, ubiquitous in all eukaryotes and represent ~2% of the human genome. Among them, trinucleotide repeats are responsible for more than two dozen neurological and developmental disorders. Targeting microsatellites with dedicated DNA endonucleases could become a viable option for patients affected with dramatic neurodegenerative disorders.
View Article and Find Full Text PDFCells can repair a double-strand break (DSB) by homologous recombination if a homologous sequence is provided as a template. This can be achieved by classical gene conversion (with or without crossover) or by single-strand annealing (SSA) between two direct repeat sequences flanking the DSB. To initiate SSA, single-stranded regions are needed adjacent to the break, extending up to the direct repeats in such a way that complementary strands can anneal to each other to repair the DSB.
View Article and Find Full Text PDFMethods Mol Biol
November 2020
Physical separation of branched DNA from linear molecules is based on the difference of mobility of linear versus branched DNA during two-dimensional agarose gel electrophoresis. Structured DNA migrates as slower species when compared to linear DNA of similar molecular weight. Metabolic processes such as S phase replication or double strand-break repair may generate branched DNA molecules.
View Article and Find Full Text PDFMethods Mol Biol
November 2020
Trinucleotide repeats are a peculiar class of microsatellites involved in many neurological as well as developmental disorders. Their propensity to generate very large expansions over time is supposedly due to their capacity to form specific secondary structures, such as imperfect hairpins, triple helices, or G-quadruplexes. These unusual structures were proposed to trigger expansions in vivo.
View Article and Find Full Text PDFTrinucleotide repeats are a particular class of microsatellites whose large expansions are responsible for at least two dozen human neurological and developmental disorders. Slippage of the two complementary DNA strands during replication, homologous recombination or DNA repair is generally accepted as a mechanism leading to repeat length changes, creating expansions and contractions of the repeat tract. The present review focuses on recent developments on double-strand break repair involving trinucleotide repeat tracts.
View Article and Find Full Text PDFNucleic acid detection and quantification using a labeled DNA probe is a very common molecular biology procedure. Here, we describe a new method, based on commonly used laboratory solutions, for nucleic acid hybridization and detection with digoxigenin-labeled DNA probes. The protocol described is faster, more sensitive and much cheaper than a standard protocol using commercial solutions.
View Article and Find Full Text PDFTrinucleotide repeat expansions involving CTG/CAG triplets are responsible for several neurodegenerative disorders, including myotonic dystrophy and Huntington's disease. Because expansions trigger the disease, contracting repeat length could be a possible approach to gene therapy for these disorders. Here, we show that a TALEN-induced double-strand break was very efficient at contracting expanded CTG repeats in yeast.
View Article and Find Full Text PDFTrinucleotide repeats are a source of genome instability, causing replication fork stalling, chromosome fragility, and impaired repair. Specialized helicases play an important role in unwinding DNA structures to maintain genome stability. The Srs2 helicase unwinds DNA hairpins, facilitates replication, and prevents repeat instability and fragility.
View Article and Find Full Text PDFTrinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat.
View Article and Find Full Text PDFBackground: The opportunistic pathogen Candida glabrata is a member of the Saccharomycetaceae yeasts. Like its close relative Saccharomyces cerevisiae, it underwent a whole-genome duplication followed by an extensive loss of genes. Its genome contains a large number of very long tandem repeats, called megasatellites.
View Article and Find Full Text PDFTrinucleotide repeat expansions are involved in more than two dozen neurological and developmental disorders. Conventional therapeutic approaches aimed at regulating the expression level of affected genes, which rely on drugs, oligonucleotides, and/or transgenes, have met with only limited success so far. An alternative approach is to shorten repeats to non-pathological lengths using highly specific nucleases.
View Article and Find Full Text PDFBackground: The industrially important yeast Blastobotrys (Arxula) adeninivorans is an asexual hemiascomycete phylogenetically very distant from Saccharomyces cerevisiae. Its unusual metabolic flexibility allows it to use a wide range of carbon and nitrogen sources, while being thermotolerant, xerotolerant and osmotolerant.
Results: The sequencing of strain LS3 revealed that the nuclear genome of A.
Trinucleotide repeat expansions are responsible for more than two dozens severe neurological disorders in humans. A double-strand break between two short CAG/CTG trinucleotide repeats was formerly shown to induce a high frequency of repeat contractions in yeast. Here, using a dedicated TALEN, we show that induction of a double-strand break into a CAG/CTG trinucleotide repeat in heterozygous yeast diploid cells results in gene conversion of the repeat tract with near 100% efficacy, deleting the repeat tract.
View Article and Find Full Text PDFCentrifugal elutriation discriminates cells according to their sedimentation coefficients, generating homogeneous samples well suited for genomic comparative approaches. It can, for instance, isolate G1 daughter cells from a Saccharomyces cerevisiae unsynchronized population, alleviating ageing and cell-cycle biases when conducting genome-wide/single-cell studies. The present report describes a straightforward and robust procedure to determine whether a cell population of virtually any yeast species can be efficiently elutriated, while offering solutions to optimize success.
View Article and Find Full Text PDFMegasatellites are large DNA tandem repeats, originally described in Candida glabrata, in protein-coding genes. Most of the genes in which megasatellites are found are of unknown function. In this work, we extended the search for megasatellites to 20 additional completely sequenced fungal genomes and extracted 216 megasatellites in 203 out of 142,121 genes, corresponding to the most exhaustive description of such genetic elements available today.
View Article and Find Full Text PDFPolyploidization is an important process in the evolution of eukaryotic genomes, but ensuing molecular mechanisms remain to be clarified. Autopolyploidization or whole-genome duplication events frequently are resolved in resulting lineages by the loss of single genes from most duplicated pairs, causing transient gene dosage imbalance and accelerating speciation through meiotic infertility. Allopolyploidization or formation of interspecies hybrids raises the problem of genetic incompatibility (Bateson-Dobzhansky-Muller effect) and may be resolved by the accumulation of mutational changes in resulting lineages.
View Article and Find Full Text PDFMegasatellites are a new family of long tandem repeats, recently discovered in the yeast Candida glabrata. Compared to shorter tandem repeats, such as minisatellites, megasatellite motifs range in size from 135 to more than 300 bp, and allow calculation of evolutionary distances between individual motifs. Using divergence based on nucleotide substitutions among similar motifs, we determined the smallest distance between two motifs, allowing their subsequent clustering.
View Article and Find Full Text PDF