Publications by authors named "Guy Fournet"

Nonsense-mediated mRNA decay (NMD) is a quality control mechanism that degrades mRNAs carrying a premature termination codon. Its inhibition, alone or in combination with other approaches, could be exploited to develop therapies for genetic diseases caused by a nonsense mutation. This, however, requires molecules capable of inhibiting NMD effectively without inducing toxicity.

View Article and Find Full Text PDF

We herein report the development and evaluation of a novel HER2-targeting antibody-drug conjugate (ADC) based on the topoisomerase I inhibitor payload exatecan, using our hydrophilic monodisperse polysarcosine (PSAR) drug-linker platform (PSARlink). In vitro and in vivo experiments were conducted in breast and gastric cancer models to characterize this original ADC and gain insight about the drug-linker structure-activity relationship. The inclusion of the PSAR hydrophobicity masking entity efficiently reduced the overall hydrophobicity of the conjugate and yielded an ADC sharing the same pharmacokinetic profile as the unconjugated antibody despite the high drug-load of the camptothecin-derived payload (drug-antibody ratio of 8).

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDHs) are multifunctional enzymes that oxidize diverse endogenous and exogenous aldehydes. We conducted a meta-analysis based on The Cancer Genome Atlas and Gene Expression Omnibus data and detected genetic alterations in ALDH1A1, ALDH1A3, or ALDH3A1, 86% of which were gene amplification or mRNA upregulation, in 31% of nonsmall cell lung cancers (NSCLCs). The expression of these isoenzymes impacted chemoresistance and shortened survival times in patients.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) convey highly potent anticancer drugs to antigen-expressing tumor cells, thereby sparing healthy tissues throughout the body. Pharmacokinetics and tolerability of ADCs are predominantly influenced by the drug-antibody ratio (DAR) of the conjugates, which is to-date limited to a value of 3-4 drugs per antibody in ADCs under clinical investigations. Here, we report the synthesis of monodisperse ( discrete) polysarcosine compounds and their use as a hydrophobicity masking entity for the construction of highly-loaded homogeneous β-glucuronidase-responsive antibody-drug conjugates (ADCs).

View Article and Find Full Text PDF

Modification of SMN2 exon 7 (E7) splicing is a validated therapeutic strategy against spinal muscular atrophy (SMA). However, a target-based approach to identify small-molecule E7 splicing modifiers has not been attempted, which could reveal novel therapies with improved mechanistic insight. Here, we chose as a target the stem-loop RNA structure TSL2, which overlaps with the 5' splicing site of E7.

View Article and Find Full Text PDF

We previously reported the anti-migratory function of 3-aryl-2-quinolone derivatives, chemically close to flavonoids (Joseph et al., 2002). Herein we show that 3-arylquinoline or 3-aryl-2-quinolone derivatives disrupt cell adhesion in a dose dependent and reversible manner yet antagonized by artificial integrin activation such as manganese.

View Article and Find Full Text PDF

New series of 2,3,4,5-tetrahydro[1,4]diazepino[1,2-a]indol-1-ones and 3,4,5,10-tetrahydro-2H-diazepino[3,4-b]indol-1-ones have been synthesized through an iodolactonisation/lactone-to-lactam rearrangement sequence. These compounds were evaluated as potential protein kinase inhibitors (CDK1, CDK5 and GSK-3). 11-Iodo-2,3,4,5-tetrahydro[1,4]diazepino[1,2-a]indol-1-one derivatives exhibited sub-micromolar inhibitory activity against cyclin-dependent kinases.

View Article and Find Full Text PDF

Based on 5-HT1A and 5-HT7 ligand MR25003 scaffold, a new series of 1-aryl indole analogues were prepared and evaluated against 5-HT7 receptors. Modulations of aryl moieties provided a large number of new indolic derivatives. Most of compounds tested have displayed 5-HT7 affinity in the nanomolar range.

View Article and Find Full Text PDF

Structure-based studies led to the identification of a constrained derivative of S-trityl-l-cysteine (STLC) scaffold as a candidate inhibitor of hepatitis C virus (HCV) NS5B polymerase. A panel of STLC derivatives were synthesized and investigated for their activity against HCV NS5B. Three STLC derivatives, 9, F-3070, and F-3065, were identified as modest HCV NS5B inhibitors with IC(50) values between 22.

View Article and Find Full Text PDF

Methionine, in addition to its role in protein synthesis, participates in 3 important cellular functions: as AdoMet in transmethylation; as decarboxylated-AdoMet in aminopropylation; as homocysteine its demethylated form, in trans-sulphuration. Here we provide evidence from the literature and from our own work for a fourth role for its oxoacid: 4-methylthio-2-oxo-butanoate (MTOB) in apoptosis [28,29]. MTOB enters 2 pathways: (a) transamination by glutamine-transaminase K to methionine[13,14].

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are exploring CDK inhibitors for their therapeutic potential, with (R)-roscovitine showing selectivity and low toxicity in clinical trials.
  • To enhance its effectiveness, the team synthesized new compounds and discovered that one, named GP0210, is more potent at inhibiting CDKs and inducing cancer cell death than (R)-roscovitine.
  • This could lead to the development of improved second generation CDK inhibitors with greater biomedical benefits.
View Article and Find Full Text PDF

Cyclin-dependent kinases (CDKs) and their regulators show frequent abnormalities in tumors. Ten low molecular weight pharmacologic inhibitors of CDKs are currently in clinical trials against various cancers, including the 2,6,9-trisubstituted purine (R)-roscovitine (CYC202/Seliciclib). We here report the characterization of N-&-N1, a bioisoster of roscovitine displaying improved antitumoral properties.

View Article and Find Full Text PDF

Introduction: 5-hydroxytryptamine (5-HT)6 receptors represent one of the more recently discovered serotoninergic receptor family. However, no 5-HT6 positron emission tomography (PET) radiotracer is currently used in clinical imaging studies. The purpose of this study was to propose the first fluorinated PET radiotracer for this brain receptor.

View Article and Find Full Text PDF

The pharmacomodulation of the N atom of alpha,beta-acetylenic aminothiolesters or the replacement of the thiolester moiety by more electrophilic groups did not permit any clear rationale to be established for improving the selective growth-inhibitory activity of this family of compounds over that of the previously synthesized alpha,beta-acetylenic aminothiolesters DIMATE and MATE [G. Quash, G. Fournet, J.

View Article and Find Full Text PDF

6S,8S-Bis(3-methylthiopropanoyl) thiolesters of lipoic acid were synthesized with the carboxyl moiety of lipoate modified as methyl or water soluble choline esters. Evaluation on different cell lines in culture showed that they possessed modest antiproliferative activity. However, the 6-fold decrease in IC50 (from 270 to 45 microM) observed with the water soluble 6S,8S-bis(3-methylthiopropenoyl) thiolester dehydro derivative on a human epithelial prostate cancer cell line (DU145) argues in favor of 3-methylthiopropanoyl metabolites as endogenous growth regulatory (apoptogenic) compounds derived from methionine.

View Article and Find Full Text PDF

The 81D1C2 monoclonal antibody (Mab) directed against the Nepsilon-(gamma-L-glutamyl)-L-lysine isopeptide was found to cross-react on Enzyme Immuno Assay (EIA) with acylated lysines. Using a differential screening EIA procedure, a new Mab 81D4 was selected, which did not cross-react with acylated lysines but exhibited strong reactivity with Nepsilon-(gamma-L-glutamyl)-L-lysine formed by covalently coupling the gamma-carboxyl of NalphaCBZ OtBu glutamic acid to epsilon-NH2 derivatized microtiter plates. When Nepsilon-(gamma-L-glutamyl)-L-lysine isopeptides were generated on gamma-carboxyl derivatized plates, only lysine isopeptides with blocked alpha-amines were reactive, regardless of whether the bond formed by the amine blocking agent was a carbamate with carbobenzyloxychloride or an amide with acetic anhydride.

View Article and Find Full Text PDF

Our aim in this commentary is to provide evidence that certain oxoacids formed in anaplerotic reactions control cell proliferation/apoptosis. In tumour cells with impaired Krebs cycle enzymes, some anaplerotic reactions do compensate for the deficit in oxoacids. One of these, oxaloacetate, derived from the transamination of asparagine but not of aspartate, is decarboxylated 4-fold more efficiently in polyoma-virus transformed cells than in their non-transformed counterparts.

View Article and Find Full Text PDF

A new compound, 8[[3-[4-(2-[(11)C]methoxyphenyl)piperazin-1-yl]-2-hydroxypropyl]oxy]thiochroman was labeled via O-methylation with [(11)C]methyl iodide in good yield and specific activity. Original biological evaluations included (i) the study in anesthetized rat with a beta-sensitive intracerebral probe (beta-Microprobe), allowing to measure locally the kinetic of the new PET ligand, and (ii) a PET-scan on a conditioned cat maintained awake during the acquisition. In both in vivo techniques, the new ligand did not reveal any specific binding in hippocampus indicating that this radiotracer is not suitable for mapping 5HT(1A) receptors using positron emission tomography.

View Article and Find Full Text PDF

4-Amino-4-methyl-pent-2-ynthioc acid S-methyl ester (ampal thiolester: ATE) was used as a lead compound to synthesise new amino-substituted derivatives of alpha, beta acetylenic thiolester compounds as inhibitors of aldehyde dehydrogenase 1, (ALDH1). Of these compounds, the dimethyl derivative (DIMATE) was a competitive irreversible inhibitor (K(i) approximately 280 microM) of baker's yeast ALDH1 in vitro showing 80% inhibition at 400 microM when preincubated with the enzyme for 30min, whereas the trimethyl ammonium and the morpholine derivatives showed only 15% inhibition at 600 microM even after 60min preincubation. ATE inhibited ALDH1 activity in ALDH1-transfected L1210 T cells resistant to hydroperoxycyclophosphamide (HCPA) and inhibited growth synergistically in the presence of HCPA.

View Article and Find Full Text PDF