We present the first study of the quark mass dependence of the heavy quark momentum and spatial diffusion coefficients using lattice QCD with light dynamical quarks corresponding to a pion mass of 320 MeV. We find that, for the temperature range 195 MeV
We compute the hydrodynamic relaxation times τ_{π} and τ_{j} for hot QCD at next-to-leading order in the coupling with kinetic theory. We show that certain dimensionless ratios of second-order to first-order transport coefficients obey bounds which apply whenever a kinetic theory description is possible; the computed values lie somewhat above these bounds. Strongly coupled theories with holographic duals strongly violate these bounds, highlighting their distance from a quasiparticle description.
View Article and Find Full Text PDFAt second order in gradients, conformal relativistic hydrodynamics depends on the viscosity η and on five additional "second-order" hydrodynamical coefficients τ(Π), κ, λ₁, λ₂, and λ₃. We derive Kubo relations for these coefficients, relating them to equilibrium, fully retarded three-point correlation functions of the stress tensor. We show that the coefficient λ₃ can be evaluated directly by Euclidean means and does not in general vanish.
View Article and Find Full Text PDFWe calculate and compare bremsstrahlung and collisional energy loss of hard partons traversing a quark-gluon plasma. Our treatment of both processes is complete at leading order in the coupling and accounts for the probabilistic nature of the jet energy loss. We find that the nuclear modification factor R(AA) for neutral pi(0) production in heavy ion collisions is sensitive to the inclusion of collisional and radiative energy loss contributions while the averaged energy loss only slightly increases if collisional energy loss is included for parent parton energies E>>T.
View Article and Find Full Text PDFWe compute the momentum diffusion coefficient of a heavy quark in a hot QCD plasma, to next-to-leading order in the weak-coupling expansion. Corrections arise at [see formula]; physically they represent interference between overlapping scatterings, as well as soft, electric scale (p approximately gT) gauge field physics, which we treat using the hard thermal loop effective theory. In 3-color, 3-flavor QCD, the momentum diffusion constant of a fundamental representation heavy quark at next-to-leading order is kappa = 16pi/3alpha(s)(2)T(3)(ln1/g(s)+0.
View Article and Find Full Text PDFHydrodynamical modeling of heavy-ion collisions at RHIC suggests that the quark-gluon plasma (QGP) "thermalizes" in a remarkably short time scale, about 0.6 fm/c. We argue that this should be viewed as indicating fast isotropization, but not necessarily complete thermalization, of the nonequilibrium QGP.
View Article and Find Full Text PDF