Publications by authors named "Guy Cesar"

The incorporation of representative commercial compostable materials into a full-scale open-air windrow composting process in an industrial site using household-separated biowaste was investigated. Two batches out of the same initial biowaste mixture were studied, one as control and the other containing initially 1.28 wt% of certified compostable plastics.

View Article and Find Full Text PDF

Elutriation is an efficient process for extracting microplastics. The development of a numerical model has shown the need for optimizing aspects of the design of the actual elutriation protocol as well as the dimensioning of the column to increase its efficiency. The study aims to propose new dimensioning data and protocol elements for designing an efficient column.

View Article and Find Full Text PDF

Ageing of various plastics in marine environment was monitored after immersion of two synthetic (polyvinylchloride, PVC, and polyethylene terephthalate, PET) and one biodegradable (poly(butylene adipate co-terephtalate), PBAT) plastics for 502days in the bay of Lorient (Brittany, France). Data analysis indicates that aged PVC rapidly releases estrogenic compounds in seawater with a later adsorption of heavy metals; PET undergoes a low weakening of the surface whereas no estrogenic activity is detected; PBAT ages faster in marine environment than PVC. Aged PBAT exhibits heterogeneous surface with some cavities likely containing clay minerals from the chlorite group.

View Article and Find Full Text PDF

The elutriation process has shown its efficiency to extract microplastics from sand and began to spread in the scientific community. This extraction technic requires knowing with accuracy the extraction velocities of particles. This study aims to test whether numerical modeling could help to calculate these velocities.

View Article and Find Full Text PDF

Evaluating the microplastics pollution on the shores requires overcoming the technological and economical challenge of efficient plastic extraction from sand. The recovery of dense microplastics requires the use of NaI solutions, a costly process. The aim of this study is to decrease this cost by recycling the NaI solutions and to determine the impact of NaI storage.

View Article and Find Full Text PDF

Although relatively easy to extract in the marine environment, microplastics are very difficult to recover when they are trapped in sediments. The elutriation column is one of the best tools currently available for extracting plastics from sediment, but with a high sand recovery yield. This study aims to address the following questions: (i) is it possible to use a sedimentological approach to limit the sand recovery? (ii) does the extraction velocity of the sand and plastic particles vary according to density and granulometry? (iii) what is the relative recovery efficiency obtained for dense polymer particles mixed with marine sand? Based on a new granulometric classification, different plastic particle-size fractions are defined.

View Article and Find Full Text PDF

In the aim of resolving environmental key issues such as irreversible soil pollution by non-biodegradable and non-recoverable polyethylene (PE) fragments, a full-scale field experiment was set up to evaluate the suitability of four biodegradable materials based on poly(butylene adipate-co-terephtalate) (PBAT) to be used as sustainable alternatives to PE for mulching application in vineyard. Initial ultimate tensile properties, functional properties during field ageing (water vapour permeability and radiometric properties), biodegradability and agronomical performance of the mulched vines (wood production and fruiting yield) were studied. In spite of their early loss of physical integrity that occurred only five months after vine planting, the four materials satisfied all the requested functional properties and led to agronomic performance as high as polyethylene.

View Article and Find Full Text PDF