Publications by authors named "Guy Caldwell"

Genetically modified organisms are commonly used in disease research and agriculture but the precise genomic alterations underlying transgenic mutations are often unknown. The position and characteristics of transgenes, including the number of independent insertions, influences the expression of both transgenic and wild-type sequences. We used long-read, Oxford Nanopore Technologies (ONT) to sequence and assemble two transgenic strains of commonly used in the research of neurodegenerative diseases: BY250 (pPdat-1::GFP) and UA44 (GFP and human -synuclein), a model for Parkinson's research.

View Article and Find Full Text PDF

Homozygosity for the ε4 allele of APOE increases the odds of developing Alzheimer's by 12 to 15 times relative to the most common ε3;ε3 genotype, and its association with higher plaque loads comports with evidence that APOEε4 compromises autophagy. The ApoE4 protein specifically binds a cis element ("CLEAR") in the promoters of several autophagy genes to block their transcription. We used a multifaceted approach to identify a druggable site in ApoE4, and virtual screening of lead-like compounds identified small molecules that specifically bind to this site to impede ApoE4::DNA binding.

View Article and Find Full Text PDF

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects.

View Article and Find Full Text PDF

On the 15th Anniversary of Disease Models & Mechanisms as a trailblazing venue for the dissemination of discoveries pertaining to human health involving model systems, we celebrate the journey of this journal, as mirrored through the evolution of research using the nematode roundworm, Caenorhabditis elegans. Driven by the exponential growth of genomic data, worms have advanced from a basic research tool to precise and elegant models for disease and have yielded substantive insights into numerous human disorders. A harbinger of functional genomic analysis since the inception of RNA interference screening, the directed application of C.

View Article and Find Full Text PDF

Failure of inherently protective cellular processes and misfolded protein-associated stress contribute to the progressive loss of dopamine (DA) neurons characteristic of Parkinson's disease (PD). A disease-modifying role for the microbiome has recently emerged in PD, representing an impetus to employ the soil-dwelling nematode, as a preclinical model to correlate changes in gene expression with neurodegeneration in transgenic animals grown on distinct bacterial food sources. Even under tightly controlled conditions, hundreds of differentially expressed genes and a robust neuroprotective response were discerned between clonal strains overexpressing human alpha-synuclein in the DA neurons fed either one of only two subspecies of .

View Article and Find Full Text PDF

Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in mutants, normally encoding the only catalytically active ADAR in , ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of , the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration.

View Article and Find Full Text PDF

Oxidative stress is a contributing factor to Parkinson's disease (PD). Considering the prevalence of sporadic PD, environmental exposures are postulated to increase reactive oxygen species and either incite or exacerbate neurodegeneration. We previously determined that exposure to the common soil bacterium, (), enhanced oxidative stress and mitochondrial dysfunction in , leading to dopaminergic (DA) neurodegeneration.

View Article and Find Full Text PDF

Previous research has described promising neuroprotective and/or antioxidant properties for extracts derived from a few (sage) species. Here, six new species were isolated during flowering times from plants native to Turkey. Extracts were prepared and then examined for their potential to rescue both anterior and posterior mechanosensory behavioral defects in a transgenic Alzheimer's disease model that expresses human amyloid-beta (Aβ) peptide (1-42) exclusively in the glutamatergic neurons.

View Article and Find Full Text PDF

Whole-exome sequencing of Parkinson's disease (PD) patient DNA identified single-nucleotide polymorphisms (SNPs) in the tyrosine nonreceptor kinase-2 () gene. Although this kinase had a previously demonstrated activity in preventing the endocytosis of the dopamine reuptake transporter (DAT), a causal role for TNK2-associated dysfunction in PD remains unresolved. We postulated the dopaminergic neurodegeneration resulting from patient-associated variants in were a consequence of aberrant or prolonged TNK2 overactivity, the latter being a failure in TNK2 degradation by an E3 ubiquitin ligase, neuronal precursor cell-expressed developmentally down-regulated-4 (NEDD4).

View Article and Find Full Text PDF

The exponential accumulation of DNA sequencing data has opened new avenues for discovering the causative roles of single-nucleotide polymorphisms (SNPs) in neurological diseases. The opportunities emerging from this are staggering, yet only as good as our abilities to glean insights from this surplus of information. Whereas computational biology continues to improve with respect to predictions and molecular modeling, the differences between in silico and in vivo analysis remain substantial.

View Article and Find Full Text PDF

The fine-tuning of gene expression is critical for all cellular processes; aberrations in this activity can lead to pathology, and conversely, resilience. As their role in coordinating organismal responses to both internal and external factors have increasingly come into focus, small non-coding RNAs have emerged as an essential component to disease etiology. Using Systemic RNA interference Defective (SID) mutants of the nematode Caenorhabditis elegans, deficient in gene silencing, we examined the potential consequences of dysfunctional epigenomic regulation in the context of Parkinson's disease (PD).

View Article and Find Full Text PDF

Synucleinopathy (Parkinson's disease (PD); Lewy body dementia) disease-modifying treatments represent a huge unmet medical need. Although the PD-causing protein α-synuclein (αS) interacts with lipids and fatty acids (FA) physiologically and pathologically, targeting FA homeostasis for therapeutics is in its infancy. We identified the PD-relevant target stearoyl-coA desaturase: inhibiting monounsaturated FA synthesis reversed PD phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • A decrease in the removal of damaged mitochondria is linked to aging and neurodegenerative diseases like Alzheimer's.
  • Recent research used machine learning and cross-species testing to discover new compounds that can enhance mitophagy, identifying 18 small molecules that promote this process.
  • In studies with nematodes and rodents, two potent mitophagy inducers improved neuron health and memory by reducing Alzheimer's-related pathologies, indicating a shared mechanism behind memory loss in AD.
View Article and Find Full Text PDF
Article Synopsis
  • VPS41 is part of the HOPS complex important for lysosomal fusion and regulated secretion, and mutations in VPS41 were found in three patients with neurodegeneration characterized by ataxia and dystonia.
  • Mutations resulted in dysfunctional HOPS complex formation, leading to delayed lysosomal delivery of cellular materials and altered cellular signaling pathways, particularly affecting mTORC1 and autophagy responses.
  • In a C. elegans model of Parkinson's disease, VPS41 mutations undermined its neuroprotective role against toxic protein aggregates, suggesting the variants contribute to a neurodegenerative disease by disrupting critical cellular functions.
View Article and Find Full Text PDF
Article Synopsis
  • Ykt6 is a SNARE protein that plays a crucial role in vesicular fusion, transitioning between active and inactive forms in different cellular compartments.
  • Research showed that Ykt6 is phosphorylated at a specific site influenced by calcium signaling, which triggers a change in its shape from a closed to an open form.
  • This open form alters Ykt6's interactions with other proteins, which can disrupt secretory and autophagy pathways, potentially increasing toxicity in models of Parkinson's disease.
View Article and Find Full Text PDF

Tobacco smoking is a risk factor for several human diseases. Conversely, smoking also reduces the prevalence of Parkinson's disease, whose hallmark is degeneration of dopaminergic neurons (DNs). We use as a model to investigate whether tobacco-derived nicotine activates nicotinic acetylcholine receptors (nAChRs) to selectively protect DNs.

View Article and Find Full Text PDF
Article Synopsis
  • In 2008, guidelines were established for researching autophagy, which has since gained significant interest and new technologies, necessitating regular updates to monitoring methods across various organisms.
  • The new guidelines emphasize selecting appropriate techniques to evaluate autophagy while noting that no single method suits all situations; thus, a combination of methods is encouraged.
  • The document highlights that key proteins involved in autophagy also impact other cellular processes, suggesting genetic studies should focus on multiple autophagy-related genes to fully understand these pathways.
View Article and Find Full Text PDF

The AAA+ protein disaggregase, Hsp104, increases fitness under stress by reversing stress-induced protein aggregation. Natural Hsp104 variants might exist with enhanced, selective activity against neurodegenerative disease substrates. However, natural Hsp104 variation remains largely unexplored.

View Article and Find Full Text PDF

The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions.

View Article and Find Full Text PDF

Parkinson's Disease (PD) is the second-most common neurodegenerative disease in the world, yet the fundamental and underlying causes of the disease are largely unknown, and treatments remain sparse and impotent. Several biological systems have been employed to model the disease but the nematode roundworm shows unique promise among these to disinter the elusive factors that may prevent, halt, and/or reverse PD phenotypes. Some of the most salient of these models of PD are those that position the misfolding-prone protein alpha-synuclein (α-syn), a hallmark pathological component of PD, as the primary target for scientific interrogation.

View Article and Find Full Text PDF

Growing evidence implicates α-synuclein aggregation as a key driver of neurodegeneration in Parkinson's disease (PD) and other neurodegenerative disorders. Herein, the molecular and structural mechanisms of inhibiting α-synuclein aggregation by novel analogs of nordihydroguaiaretic acid (NDGA), a phenolic dibenzenediol lignan, were explored using an array of biochemical and biophysical methodologies. NDGA analogs induced modest, progressive compaction of monomeric α-synuclein, preventing aggregation into amyloid-like fibrils.

View Article and Find Full Text PDF