Production of volatile fatty acids from food waste and lignocellulosic materials has potential to avoid emissions from their production from petrochemicals and provide valuable feedstocks. Techno-economic and life cycle assessments of using food waste and grass to produce volatile fatty acids through anaerobic digestion have been conducted. Uncertainty and sensitivity analysis for both assessments were done to enable a robust forecast of key-aspects of the technology deployment at industrial scale.
View Article and Find Full Text PDFSecondary production of steel is known to significantly decrease the CO emissions of steelmaking, but only 40 % of steel is produced through recycling, which is made difficult by contamination of scrap resources with nonferrous metals and nonmetal debris. These contaminants include zinc, towards which blast furnace and electric arc systems have a low tolerance (<0.02 wt %).
View Article and Find Full Text PDFA novel combination of solids screening, centrifugation, microfiltration, pervaporation, and electrodialysis were used for the targeted and exclusive recovery of volatile fatty acids (VFAs) from an 80L bioreactor. The bioreactor was continually-fed with grass waste, containing 40gL total solids, over three, seven-day, hydraulic retention times. A VFA solution with a concentration up to 4,500 mgL was recovered.
View Article and Find Full Text PDFA novel method to recover VFAs from a continually-fed 100 L food waste bioreactor was developed using industrially applicable methods. The in-situ recovery of VFAs increased production rates from 4 to 35 mg g day by alleviating end-product inhibition and arresting methanogenesis, and electrodialysis was able to concentrate the recovered VFAs to 4000 mg L. There remains considerable scope to increase the production rates and concentrations further, and the VFAs were recovered in a form that made them suitable for use as platform chemicals with minimal refining.
View Article and Find Full Text PDFAntibiotic resistant bacteria (ARB) and their genes (ARGs) have become recognised as significant emerging environmental pollutants. ARB and ARGs in sewage sludge can be transmitted back to humans via the food chain when sludge is recycled to agricultural land, making sludge treatment key to control the release of ARB and ARGs to the environment. This study investigated the fate of antibiotic resistant Escherichia coli and a large set of antibiotic resistance genes (ARGs) during full scale anaerobic digestion (AD) of sewage sludge at two U.
View Article and Find Full Text PDFThis research investigated the use of an innovative polytetrafluoroethylene (PTFE) membrane configuration coupled to electrodialysis for the in-situ removal of Volatile Fatty Acids (VFAs) from a mixed culture bioreactor. It was shown that by stacking the PTFE membranes to increase the active membrane surface area, shortened VFA recovery times was seen. The addition of electrodialysis to the PTFE membrane stack enabled the continuous extraction of VFAs from fermentation media whilst retaining essential nutrients and organic compounds in the diluate stream.
View Article and Find Full Text PDFCopper recovery from distillery effluent was studied in a scalable bioelectro-chemical system with approx. 6.8 L total volume.
View Article and Find Full Text PDFA novel and fully automated sequential injection analysis manifold coupled to a capillary electrophoresis apparatus with amperometric detection, is described. The sequential injection manifold was isolated from the high voltage by inserting an air plug into the circuit. Small buffer reservoirs were used to avoid the need to pump fresh buffer to the interface during the electrophoretic separation.
View Article and Find Full Text PDFElectrodialysis (ED) removed volatile fatty acids (VFAs) from a continually-fed, hydrogen-producing fermenter. Simultaneously, electrochemical removal and adsorption removed gaseous H and CO, respectively. Removing VFAs via ED in this novel process increased H yields by a factor of 3.
View Article and Find Full Text PDFThe use of electrochemical hydrogen removal (EHR) together with carbon dioxide removal (CDR) was demonstrated for the first time using a continuous hydrogen producing fermenter. CDR alone was found to increase hydrogen yields from 0.07molH2molhexose to 0.
View Article and Find Full Text PDFBatch studies are used to benchmark biohydrogen potential (BHP) and biomethane potential (BMP) yields from feed substrates, digestates residues and different process configurations. This study shows that BMP yields using cellulose can be biased positively by not diluting the initial sewage sludge inoculum and the bias is independent of starting inoculum volatile solids (VS) concentration. The carryover of BHP inoculum also increased the BMP yields when using cellulose as a substrate by up to 18.
View Article and Find Full Text PDFReal time measurement of gas production and composition were used to examine the benefits of two stage anaerobic digestion (AD) over a single stage AD, using pelletized grass as a feedstock. Controlled, parallel digestion experiments were performed in order to directly compare a two stage digestion system producing hydrogen and methane, with a single stage system producing just methane. The results indicated that as well as producing additional energy in the form of hydrogen, two stage digestion also resulted in significant increases to methane production, overall energy yields, and digester stability (as indicated by bicarbonate alkalinity and volatile fatty acid removal).
View Article and Find Full Text PDFHydrogen production during dark fermentation is inhibited by the co-production of volatile fatty acids (VFAs) such as acetic and n-butyric acid. In this study, the effectiveness of conventional electrodialysis (CED) in reducing VFA concentrations in model solutions and hydrogen fermentation broths is evaluated. This is the first time CED has been reported to remove VFAs from hydrogen fermentation broths.
View Article and Find Full Text PDFA factorially designed experiment to examine the effectiveness of Ca(OH)2 pre-treatment, enzyme addition and particle size, on the mesophilic (35 °C) anaerobic digestion of wheat straw was conducted. Experiments used a 48 h pre-treatment with Ca(OH)2 7.4% (w/w), addition of Accellerase®-1500, with four particle sizes of wheat straw (1.
View Article and Find Full Text PDFMethanogenesis may diminish coulombic efficiency of microbial fuel cells (MFCs), although its importance is application dependent; e.g., suppression of methanogenesis may improve MFC sensing accuracy, but may be tolerable in COD removal from wastewaters.
View Article and Find Full Text PDFTitration methodologies have been used for the many years for low cost routine monitoring of full scale anaerobic digestion plants. These methodologies have been correlated to indicate the carbonate alkalinity and the volatile fatty acids (VFA) content within digesters. Two commonly used two end-point titration methods were compared using a dataset of 154 samples from energy crop and animal slurry digestates and were shown to be inaccurate in the estimation of tVFA.
View Article and Find Full Text PDFExternal stress factors in the form of ionic species or temperature increases have been shown to produce a stress response leading to enhanced PHA production. The effect of five different NaCl concentrations, namely 3.5, 6.
View Article and Find Full Text PDFIn this study three different tubular helical anode designs are compared, for each helical design the pitch and nominal sectional area/liquid flow channel between the helicoids was varied and this produced maximum power densities of 11.63, 9.2 and 6.
View Article and Find Full Text PDFSimultaneous removal of organic and zinc contamination in parallel effluent streams using a Microbial Fuel Cell (MFC) would deliver a means of reducing environmental pollution whilst also recovering energy. A Microbial Fuel Cell system has been integrated with Supported Liquid Membrane (SLM) technology to simultaneously treat organic- and heavy metal containing wastewaters. The MFC anode was fed with synthetic wastewater containing 10 mM acetate, the MFC cathode chambers were fed with 400 mg L(-1) Zn(2+) and this then acted as a feed phase for SLM extraction.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2014
Ethyl glucuronide (EtG) and fatty acid ethyl esters (FAEEs) are alcohol metabolites measured in hair and are after a decade of research thought to be the best markers in hair to indicate alcoholism and abstinence Forensic Sci. Int. 218 (2012) 2.
View Article and Find Full Text PDFThe production of polyhydroxyalkanoates (PHAs) using digestate liquor as culture media is a novel application to extend the existing uses of digestates. In this study, two micro-filtered digestates (0.22 μm) were evaluated as a source of complex culture media for the production of PHA by Cupriavidus necator as compared to a conventional media.
View Article and Find Full Text PDFWater Sci Technol
September 2013
For the successful scale-up of microbial fuel cell (MFC) systems, enrichment strategies are required that not only maximise reactor performance but also allow anodic biofilms to be robust to environmental change. Cluster analysis of Denaturing Gradient Gel Electrophoresis community fingerprints showed that anodic biofilms were enriched according to substrate type and temperature. Acetate produced the highest power density of 7.
View Article and Find Full Text PDFMicrobial fuel cell (MFC) performance depends on the selective development of an electrogenic biofilm at an electrode. Controlled biofilm enrichment may reduce start-up time and improve subsequent power performance. The anode potential is known to affect start-up and subsequent performance in electrogenic bio-catalytic consortia.
View Article and Find Full Text PDF