We report a fully-correlated multi-mode pumping architecture optimized for dramatic noise reduction of a class-A dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). Thanks to amplitude division of a laser diode, the two orthogonally polarized modes emitted by the VECSEL oscillating at 852 nm are separately pumped by two beams exhibiting fully in-phase correlated intensity noises. This is shown to lead to very strong and in-phase correlations between the two lasing modes intensities.
View Article and Find Full Text PDFWe present a high peak power rapidly tunable laser system in the long-wave infrared comprising an external-cavity quantum cascade laser (EC-QCL) broadly tunable from 8 to 10 µm and an optical parametric amplifier (OPA) based on quasi phase-matching in orientation-patterned gallium arsenide (OP-GaAs) of fixed grating period. The nonlinear crystal is pumped by a pulsed fiber laser system to achieve efficient amplification in the OPA. Quasi phase-matching remains satisfied when the EC-QCL wavelength is swept from 8 to 10 µm with a crystal of fixed grating period through tuning the pump laser source around 2 µm.
View Article and Find Full Text PDFWe demonstrate a core-pumped Q-switched thulium-doped fiber laser system with fast tunability capability over 100 nm without any movable part. With up to 7 kW peak power in a diffraction-limited beam, this source is well adapted for pumping a frequency agile mid-IR parametric oscillator or amplifier based on Quasi-Phase-Match single-period crystals.
View Article and Find Full Text PDFNonlinear couplings induced by crystal diffusion and spatial inhomogeneities of the gain have been suppressed over a broad range of angular velocities in a solid-state ring laser gyro by vibrating the gain crystal at 168 kHz and 0.4 microm along the laser cavity axis. This device behaves in the same way as a typical helium-neon ring laser gyro, with a zone of frequency lock-in (or dead band) resulting from the backscattering of light on the cavity mirrors.
View Article and Find Full Text PDFWe report fine-tuning of nonlinear interactions in a solid-state ring laser gyroscope by vibrating the gain medium along the cavity axis. We demonstrate both experimentally and theoretically that nonlinear interactions vanish for some values of the vibration parameters, leading to quasi-ideal rotation sensing. We eventually point out that our conclusions can be mapped onto other subfields of physics such as ring-shaped superfluid configurations, where nonlinear interactions could be tuned by using Feshbach resonance.
View Article and Find Full Text PDFPolarization domain-wall (PDW) trains have been generated at a repetition rate of 0.6 THz in an ultralow-birefringence spun optical fiber and measured by use of an adapted frequency-resolved optical gating technique. Characterization of the intensity and the phase of the PDW train shows complete switching between adjacent domains of counterrotating circular polarizations and directly confirms predictions based on numerical simulations of the incoherently coupled nonlinear Schrödinger equations.
View Article and Find Full Text PDFWe report the experimental observation of stable pulse pairs with a +/-pi/2 phase difference in a passively mode-locked stretched-pulse fiber ring laser. In our setup the stabilization of interacting subpicosecond pulses is obtained with a large range of pulse separations, namely, from 2.7 to 10 ps, without the need for external control.
View Article and Find Full Text PDF