Quantitative assessment of cell migration in vitro is often required in fundamental and applied research from different biomedical areas including wound repair, tumor metastasis or developmental biology. A collection of assays has been established throughout the years like the most widely used scratch assay or the so-called barrier assay. It is the principle of these assays to introduce a lesion into an otherwise confluent monolayer in order to study the migration of cells from the periphery into this artificial wound and determine the migration rate from the time necessary for wound closure.
View Article and Find Full Text PDF3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs-on-a-chip (OOCs), which includes a complex arrangement of multiple cell types representing organ-specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements.
View Article and Find Full Text PDFCurrent disease models and analysis methods for cardiac drug development have been insufficient in providing accurate and reliable predictions of drug efficacy and safety. Here, we propose a custom optical flow-based analysis method to quantitatively measure recordings of contracting cardiomyocytes on polydimethylsiloxane (PDMS), compatible with medium-throughput systems. Movement of the PDMS was examined by covalently bound fluorescent beads on the PDMS surface, differences caused by increased substrate stiffness were compared, and cells were stimulated with β-agonist.
View Article and Find Full Text PDFComputer-based fully-automated cell tracking is becoming increasingly important in cell biology, since it provides unrivalled capacity and efficiency for the analysis of large datasets. However, automatic cell tracking's lack of superior pattern recognition and error-handling capability compared to its human manual tracking counterpart inspired decades-long research. Enormous efforts have been made in developing advanced cell tracking packages and software algorithms.
View Article and Find Full Text PDFConsidering the essential role of chemotaxis of adherent, slow-moving cells in processes such as tumor metastasis or wound healing, a detailed understanding of the mechanisms and cues that direct migration of cells through tissues is highly desirable. The state-of-the-art chemotaxis instruments (e.g.
View Article and Find Full Text PDFA universal coagulation test that reliably detects prolonged coagulation time in patients, irrespective of the anticoagulant administered, has not been available to date. An easily miniaturised, novel μ-fluidic universal coagulation test employing surface acoustic waves (SAW) is presented here. SAW was employed to instantly mix and recalcify 6 μl citrated whole blood and image correlation analysis was used to quantify clot formation kinetics.
View Article and Find Full Text PDFIn this paper we demonstrate the combination of supported membranes and so-called flat microfluidics, which enables one to manipulate liquids on flat chip surfaces via "inverse piezoelectric effect". Here, an alternating external electric field applied to the inter-digital transducers excites a surface acoustic wave on a piezoelectric substrate. Employing lithographic patterning of self-assembled monolayers of alkoxysilanes, we successfully confine a free-standing, hemi-cylindrical channel with the volume of merely 7 µL .
View Article and Find Full Text PDFThe interaction of targeted drug carriers with epithelial and endothelial barriers in vivo is largely determined by the dynamics of the body fluids. To simulate these conditions in binding assays, a fully biocompatible in vitro model was developed which can accurately mimic a wide range of physiological flow conditions on a thumbnail-format cell-chip. This acoustically-driven microfluidic system was used to study the interaction characteristics of protein-coated particles with cells.
View Article and Find Full Text PDFA novel method for pumping very small volumes of liquid by using surface acoustic waves is employed to create a microfluidic flow chamber on a chip. It holds a volume of only a few mul and its planar design provides complete architectural freedom. This allows for the reconstruction of even complex flow scenarios (e.
View Article and Find Full Text PDFWe have developed a microfluidic device operating at a planar surface instead of a closed channel network. The fluid is transported in single droplets using surface acoustic waves (SAW) on a piezoelectric LiNbO(3) substrate. The surface of the piezo is chemically structured to induce high contact angles of the droplets or enclose areas where the liquid can wet the substrate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2004
The flow profile in a capillary gap and the pumping efficiency of an acoustic micropump employing surface acoustic waves is investigated both experimentally and theoretically. Ultrasonic surface waves on a piezoelectric substrate strongly couple to a thin liquid layer and generate a quadrupolar streaming pattern within the fluid. We use fluorescence correlation spectroscopy and fluorescence microscopy as complementary tools to investigate the resulting flow profile.
View Article and Find Full Text PDFWe report the first measurement of the kinetics of adhesion of a single giant vesicle controlled by the competition between membrane-substrate interaction mediated by ligand-receptor interaction, gravitation, and Helfrich repulsion. To model the cell-tissue interaction, we doped the vesicles with lipid-coupled polymers (mimicking the glycocalix) and the reconstituted ligands selectively recognized by alpha(IIb)beta(3) integrin-mediating specific attraction forces. The integrin was grafted on glass substrates to act as a target cell.
View Article and Find Full Text PDFWe report the synthesis of a new integrin alpha(IIb)beta(3)-specific cyclic hexapeptide that contains an Arg-Gly-Asp (RGD) sequence and is coupled to a dimyristoylthioglyceryl anchor. We demonstrate that this ligand is useful to study specific integrin binding to membrane surfaces. With the help of biotinylated analogues of the peptide, a spacer of optimal length between the peptide and lipid moieties was searched for by evaluating the binding strength with an enzyme-coupled immunosorbent assay (ELISA) and by surface plasmon resonance (SPR).
View Article and Find Full Text PDFUsing amino acids 884-1066 and 884-1012 expressed from chicken vinculin as fusion proteins with schistosomal glutathione S-transferase, we determined the binding kinetics of the protein fragments with F-actin. We established by the stopped-flow method a two-step binding process: an initial rapid reaction followed by a slower process. The latter is attributed to F-actin cross-linking and/or bundling, which was previously detected by viscometry and electron microscopy [Johnson, R.
View Article and Find Full Text PDFWe studied the gel-sol transformation of F-actin/alpha-actinin solutions. Cross-linking of actin filaments by alpha-actinin shows a temperature-dependent increase in light scatter signal, (I)T. Higher F-actin/alpha-actinin molar ratios, r(A alpha) as well as increases in F-actin concentration, [A], and reduction of actin filament lengths, rAG, augment the maximal light intensity, I and shift the gel-sol transition point, Tg to higher temperatures.
View Article and Find Full Text PDFWe examined the binding kinetics of intact talin and talin head and tail fragment with F-actin at pH 7.0 and at low ionic strength. We observed by a transient kinetic method a fast followed by a slower binding process for intact talin and talin tail fragment with filamentous actin.
View Article and Find Full Text PDF