The discovery of unconventional superconductivity often triggers significant interest in associated electronic and structural symmetry breaking phenomena. For the infinite-layer nickelates, structural allotropes are investigated intensively. Here, using high-energy grazing-incidence x-ray diffraction, we demonstrate how in-situ temperature annealing of the infinite-layer nickelate PrNiO ( ≈ 0) induces a giant superlattice structure.
View Article and Find Full Text PDFX-ray Diffraction Computed Tomography (XRD-CT) represents a cutting-edge method for non-destructive material analysis, offering the unique capability of providing molecular-level information with spatial resolution. In this study, we have applied XRD-CT to investigate pharmaceutically relevant tablets that have been subjected to a range of compression pressures typical in tablet manufacturing. By employing XRD-CT to pharmaceutical tablets, we reveal material changes without tablet destruction, thereby avoiding potential phase transformations during sample preparation that could lead to errors in the interpretation of the processes that have occurred.
View Article and Find Full Text PDFColloidal lead halide perovskite nanocrystals have potential for lighting applications due to their optical properties. Precise control of the nanocrystal dimensions and composition is a prerequisite for establishing practical applications. However, the rapid nature of their synthesis precludes a detailed understanding of the synthetic pathways, thereby limiting the optimisation.
View Article and Find Full Text PDFStomatopods are ferocious hunters that use weaponized appendages to strike down their pray. The clubs of species such as Odontodactylus scyllarus undergo tremendous forces, and in consequence they have intricate structures, consisting of hydroxyapatite, chitin, amorphous calcium phosphate and carbonate, and occasionally calcite. These materials are distributed differently across the four major zones of the dactyl club: the impact, periodic lateral and medial, and striated regions.
View Article and Find Full Text PDFNanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied.
View Article and Find Full Text PDFNew diagnostic approaches are needed to drive progress in the field of electrocatalysis and address the challenges of developing electrocatalytic materials with superior activity, selectivity, and stability. To this end, we developed a versatile experimental setup that combines two complementary in-situ techniques for the simultaneous chemical and structural analysis of planar electrodes under electrochemical conditions: high-energy surface X-ray diffraction (HE-SXRD) and infrared reflection absorption spectroscopy (IRRAS). We tested the potential of the experimental setup by performing a model study in which we investigated the oxidation of preadsorbed CO on a Pt(111) surface as well as the oxidation of the Pt(111) electrode itself.
View Article and Find Full Text PDFCuBi O has recently emerged as a promising photocathode for photo-electrochemical (PEC) water splitting. However, its fast degradation under operation currently poses a limit to its application. Here, we report a novel method to study operando the semiconductor-electrolyte interface during PEC operation by surface-sensitive high-energy X-ray scattering.
View Article and Find Full Text PDFUnderstanding the nucleation and growth mechanisms of nanocrystals under hydro- and solvothermal conditions is key to tailoring functional nanomaterials. High-energy and high-flux synchrotron radiation is ideal for characterization by powder X-ray diffraction and X-ray total scattering in real time. Different versions of batch-type cell reactors have been employed in this work, exploiting the robustness of polyimide-coated fused quartz tubes with an inner diameter of 0.
View Article and Find Full Text PDFThe highest resolution of images of soft matter and biological materials is ultimately limited by modification of the structure, induced by the necessarily high energy of short-wavelength radiation. Imaging the inelastically scattered X-rays at a photon energy of 60 keV (0.02 nm wavelength) offers greater signal per energy transferred to the sample than coherent-scattering techniques such as phase-contrast microscopy and projection holography.
View Article and Find Full Text PDFIn heterogeneous catalysis, operando measurements probe catalysts in their active state and are essential for revealing complex catalyst structure-activity relationships. The development of appropriate operando sample environments for spatially resolved studies has come strongly into focus in recent years, particularly when coupled to the powerful and multimodal characterization tools available at synchrotron light sources. However, most catalysis studies at synchrotron facilities only measure structural information about the catalyst in a spatially resolved manner, whereas gas analysis is restricted to the reactor outlet.
View Article and Find Full Text PDFRev Sci Instrum
January 2023
We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed.
View Article and Find Full Text PDFCardiolipin (CL) is a unique phospholipid featuring a dimeric structure. With its four alkyl chains, it has a large hydrophobic region and the charged hydrophilic head group is relatively small. Biological membranes exhibit CL exclusively in the inner bacterial and mitochondrial membranes.
View Article and Find Full Text PDFCharacterizing electrode surface structures under operando conditions is essential for fully understanding structure-activity relationships in electrocatalysis. Here, we combine in a single experiment high-energy surface x-ray diffraction as a characterizing technique with a rotating disk electrode to provide steady state kinetics under electrocatalytic conditions. Using Pt(111) and Pt(100) model electrodes, we show that full crystal truncation rod measurements are readily possible up to rotation rates of 1200 rpm.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2022
We report a ferroelectric order around ∼99 K (), which is considerably above the long range ferrimagnetic order at 25 K (). The value of saturation electric polarization is considerable as ∼570C mfor a poling field of 5 kV cm. The ferroelectric order is associated with a significant magnetoelectric coupling below ∼90 K.
View Article and Find Full Text PDFSynchrotron high-energy X-ray diffraction computed tomography has been employed to investigate, for the first time, commercial cylindrical Li-ion batteries electrochemically cycled over the two cycling rates of C/2 and C/20. This technique yields maps of the crystalline components and chemical species as a cross-section of the cell with high spatiotemporal resolution (550 × 550 images with 20 × 20 × 3 µm voxel size in ca. 1 h).
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2021
A laser heating system for samples confined in diamond anvil cells paired with in situ X-ray diffraction measurements at the Extreme Conditions Beamline of PETRA III is presented. The system features two independent laser configurations (on-axis and off-axis of the X-ray path) allowing for a broad range of experiments using different designs of diamond anvil cells. The power of the continuous laser source can be modulated for use in various pulsed laser heating or flash heating applications.
View Article and Find Full Text PDFColloidal bismuth therapeutics have been used for hundreds of years, yet remain mysterious. Here we report an X-ray pair distribution function (PDF) study of the solvolysis of bismuth disalicylate, a model for the metallodrug bismuth subsalicylate (Pepto-Bismol). This reveals catalysis by traces of water, followed by multistep cluster growth.
View Article and Find Full Text PDFA combination of complementary high-energy X-ray diffraction, containerless solidification during electromagnetic levitation and transmission electron microscopy is used to map in situ the phase evolution in a prototype Cu-Zr-Al glass during flash-annealing imposed at a rate ranging from 10 to 10 K s and during cooling from the liquid state. Such a combination of experimental techniques provides hitherto inaccessible insight into the phase-transformation mechanism and its kinetics with high temporal resolution over the entire temperature range of the existence of the supercooled liquid. On flash-annealing, most of the formed phases represent transient (metastable) states - they crystallographically conform to their equilibrium phases but the compositions, revealed by atom probe tomography, are different.
View Article and Find Full Text PDFX-ray microscopy offers the opportunity to image biological and radiosensitive materials without special sample preparations, bridging optical and electron microscopy capabilities. However, the performance of such microscopes, when imaging radiosensitive samples, is not limited by their intrinsic resolution, but by the radiation damage induced on such samples. Here, we demonstrate a novel, to the best of our knowledge, radio-efficient microscope, scanning Compton X-ray microscopy (SCXM), which uses coherently and incoherently (Compton) scattered photons to minimize the deposited energy per unit of mass for a given imaging signal.
View Article and Find Full Text PDFThe compounds, NiSbO(NSO) and MnSbO(MSO) attract the community for the quasi one-dimensional and layered structure composed of Niand Mn, which orders antiferromagnetically at= 6.7 and 12 K, respectively. Here, we report the Griffiths-like phase much abovein the range of 37-85 K and 25-80 K for NSO and MSO, respectively.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2020
The structures of xSrO-(100 - x)TeO (x = 5, 7.5, 8.5 and 10 mol.
View Article and Find Full Text PDFDetails of fast-resistive-heating setups, controlled heating ranging from ∼10 K s to ∼10 K s, to study in situ phase transformations (on heating and on cooling) in metallic glasses by high-energy synchrotron x-ray diffraction are discussed. Both setups were designed and custom built at the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) and have been implemented at the P02.1 Powder Diffraction and Total Scattering Beamline and the P21.
View Article and Find Full Text PDFFunctional thin films are commonly integrated in electronic devices as part of a multi-layer architecture. Metal/oxide/metal structures e.g.
View Article and Find Full Text PDFGlass and anti-glass samples of bismuth tellurite (BiO-(100 - )TeO) and bismuth niobium tellurite (BiO-NbO-(100 - 2)TeO) systems were prepared by melt-quenching. The bismuth tellurite system forms glasses at low BiO concentration of 3 to 7 mol%. At 20 mol% BiO, the glass forming ability of the BiO-TeO system decreases drastically and the anti-glass phase of monoclinic BiTeO is produced.
View Article and Find Full Text PDFThe charge density wave in the high-temperature superconductor YBaCuO (YBCO) has two different ordering tendencies differentiated by their c-axis correlations. These correspond to ferro- (F-CDW) and antiferro- (AF-CDW) couplings between CDWs in neighbouring CuO bilayers. This discovery has prompted several fundamental questions: how does superconductivity adjust to two competing orders and are either of these orders responsible for the electronic reconstruction? Here we use x-ray diffraction to study YBaCuO as a function of magnetic field and temperature.
View Article and Find Full Text PDF