The design of advanced nanostructured materials with predetermined physical properties requires knowledge of the relationship between these properties and the internal structure of the material at the nanoscale, as well as the dependence of the internal structure on the production (synthesis) parameters. This work is the first report of computer-aided analysis of high pressure consolidation (cold sintering) of bimetallic nanoparticles of two immiscible (Fe and Cu) metals using the embedded atom method (EAM). A detailed study of the effect of cold sintering parameters on the internal structure and properties of bulk Fe-Cu nanocomposites was conducted within the limitations of the numerical model.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2019
Processing and properties of biodegradable load-bearing nanocomposite Fe-Ag scaffolds for bone ingrowth are reported. Fe-Ag nanocomposites were prepared employing high energy attrition milling of powders. Scaffolds with regular interconnected 300-400 μm pores and 60-75% porosity were prepared by cold sintering/high pressure consolidation of nanocomposite Fe-Ag granules, blended with porogen - highly water soluble sugar particles.
View Article and Find Full Text PDFOwing to their unique physicochemical properties, nanomaterials have become a focus of multidisciplinary research efforts including investigations of their interactions with tumor cells and stromal compartment of tumor microenvironment (TME) toward the development of next-generation anticancer therapies. Here, we report that agglomerates of radially assembled Al hydroxide crumpled nanosheets exhibit anticancer activity due to their selective adsorption properties and positive charge. This effect was demonstrated in vitro by decreased proliferation and viability of tumor cells, and further confirmed in two murine cancer models.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
October 2018
An original fabrication route of high-strength bulk Fe-5Ag and Fe-10Ag nanocomposites with enhanced degradation rate is reported. Near fully dense materials with fine nanostructures and uniform distribution of Ag nanoparticles were obtained employing high energy attrition milling of Fe-AgO powder blends followed by cold sintering - high pressure consolidation at ambient temperature that allowed the retention of the nanoscale structure. Annealing in hydrogen flow at 550 °C resulted in enhanced ductility without coarsening the nanostructure.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
September 2017
In this paper, the processing and properties of iron-toughened bioresorbable β-tricalcium phosphate (β-TCP) nanocomposites are reported. β-TCP is chemically similar to bone mineral and thus a good candidate material for bioresorbable bone healing devices; however intrinsic brittleness and low bending strength make it unsuitable for use in load-bearing sites. Near fully dense β-TCP-matrix nanocomposites containing 30vol% Fe, with and without addition of silver, were produced employing high energy attrition milling of powders followed by high pressure consolidation/cold sintering at 2.
View Article and Find Full Text PDFA novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface.
View Article and Find Full Text PDFThe use of beta-tricalcium phosphate (β-TCP) ceramic as a bioresorbable bone substitute is limited to non-load-bearing sites by the material׳s brittleness and low bending strength. In the present work, new biocompatible β-TCP-based composites with improved mechanical properties were developed via reinforcing the ceramic matrix with 30 vol% of a biodegradable iron-magnesium metallic phase. β-TCP-15Fe15Mg and β-TCP-24Fe6Mg (vol%) composites were fabricated using a combination of high energy attrition milling, cold sintering/high pressure consolidation of powders at room temperature and annealing at 400 °C.
View Article and Find Full Text PDFA modified particulate leaching method for fabrication of strong calcium phosphate-polymer composite scaffolds with improved pore interconnectivity is reported. The scaffolds were produced by mixing precompacted composite granules (β-TCP with 40vol% PLA) of different size and density with salt particles followed by high pressure consolidation (at room temperature or 120°C) and porogen dissolution. The scaffolds' compressive strength and Darcy's permeability were found to be inversely related and to be strongly dependent on the processing parameters.
View Article and Find Full Text PDFBone tissue regeneration in load-bearing regions of the body requires high-strength porous scaffolds capable of supporting angiogenesis and osteogenesis. 70% porous Nitinol (NiTi) scaffolds with a regular 3-D architecture resembling trabecular bone were produced from Ni foams using an original reactive vapor infiltration technique. The "trabecular Nitinol" scaffolds possessed a high compressive strength of 79 MPa and high permeability of 6.
View Article and Find Full Text PDFHighly dense bioresorbable Ca-deficient HA-PLA (CDHA-PLA) and β-TCP-PLA nanocomposite materials with high (up to 80 vol%) contents of the calcium phosphate (CaP) phase and homogeneous phase distribution were prepared via attrition milling followed by high pressure consolidation at ambient temperature. The microstructure and mechanical properties of the materials obtained were studied as a function of milling time and PLA amount. Attrition milling resulted in disintegration of β-TCP powder agglomerates down to 50-150 nm, disintegration of CDHA agglomerates and refinement of 15 × 150 nm(2) CDHA nanoparticles to a size of 8 × 20 nm(2), and in a uniform distribution of the polymer component.
View Article and Find Full Text PDFTargeted delivery of magnetic iron oxide nanoparticles (IONPs) to a specific tissue can be achieved by conjugation with particular biological ligands on an appropriately functionalized IONP surface. To take best advantage of the unique magnetic properties of IONPs and to maximize their blood half-life, thin, strongly bonded, functionalized coatings are required. The work reported herein demonstrates the successful application of phosphonate-anchored self-assembled monolayers (SAMs) as ultrathin coatings for such particles.
View Article and Find Full Text PDFBiodegradable calcium phosphate-PCL nanocomposite powders with unusually high ceramic volume fractions (80-95%) and uniform PCL distribution were synthesized by a non-aqueous chemical reaction in the presence of the dissolved polymer. No visible polymer separation occurred during processing. Depending on the reagents combination, either dicalcium phosphate (DCP) or Ca-deficient HA (CDHA) was obtained.
View Article and Find Full Text PDFCalcium phosphate (CaP) ceramics are widely used in bone tissue engineering due to their good osteoconductivity. The mechanical properties of CaP can be modified by the addition of small volume fractions of biodegradable polymers such as polycaprolactone (PCL). Nevertheless, it is also important to evaluate how the polymer content influences cell-material or cell-cell interactions because of potential consequences for bone regeneration and vascularization.
View Article and Find Full Text PDFJ Mater Sci Mater Med
July 2007
A new low modulus beta Ti-Nb alloy with low elastic modulus and excellent corrosion resistance is currently under consideration as a surgical implant material. The usefulness of such materials can be dramatically enhanced if their surface structure and surface chemistry can be controlled. This control is achieved by attaching a self assembled monolayer (SAM) based on 11-chloroacetyl-1-undecylphosphonic acid, CAUDPA, to the surface and immobilization of a peptide to the monolayer.
View Article and Find Full Text PDFJ Mater Sci Mater Med
April 2004
Wear behaviour of TiN(titanium nitride)-coated Ti and Ti-6AI-4V alloy against UHMW polyethylene was studied in hip simulation test. Ti alloys possess an excellent combination of mechanical properties and biocompatibility, however, they suffer from inadequate wear resistance. Thus, their use as articulating components of total joint replacements requires surface hardening, e.
View Article and Find Full Text PDF