Several diseases exhibit a high degree of heterogeneity and diverse reprogramming of cellular pathways. To address this complexity, additional strategies and technologies must be developed to define their scope and variability with the goal of improving current treatments. Nanomedicines derived from viruses are modular systems that can be easily adapted for combinatorial approaches, including imaging, biomarker targeting, and intracellular delivery of therapeutics.
View Article and Find Full Text PDFETV6 is an ETS family transcription factor that plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that led to overexpression of HDAC3-regulated interferon response genes.
View Article and Find Full Text PDFPurpose: The ETS transcription factor ESE-1 has been shown to be important in HER2 breast cancer and ESE-1 mRNA expression has been shown to associate with prognostic outcomes in the HER2 subtype, as well as in ER, HER2 luminal B patients. However, the clinical significance of ESE-1 protein expression remains unknown. The purpose of the current exploratory study is to evaluate the prognostic value of ESE-1 protein expression in molecular breast cancer subtypes with special emphasis on hormone receptor positive HER2(HR HER2) and the HER2 positive (HER2-only) breast cancer patients.
View Article and Find Full Text PDFThe highly tunable, noninvasive and spatially targeted nature of microbubble-enhanced, ultrasound-guided (MB+US) drug delivery makes it desirable for a wide variety of therapies. In breast cancer, both HER2 and HER2 type neoplasms pose significant challenges to conventional therapeutics in greater than 40% of breast cancer patients, even with the widespread application of biologics such as trastuzumab. To address this therapeutic challenge, we examined the novel combination of tumor-injected microbubble-bound siRNA complexes and monodisperse size-isolated microbubbles (4-µm diameter) to attenuate tumor growth , as well as MB+US-facilitated shRNA and siRNA knockdown of ESE-1, an effector linked to dysregulated HER2 expression in HER2 cell line propagation.
View Article and Find Full Text PDFDistinct cell types have been shown to respond to activated Ras signaling in a cell-specific manner. In contrast to its pro-tumorigenic role in some human epithelial cancers, oncogenic Ras triggers differentiation of pheochromocytoma cells and medullary thyroid carcinoma cells. Furthermore, we have previously demonstrated that in pituitary somatolactotropes, activated Ras promotes differentiation and is not sufficient to drive tumorigenesis.
View Article and Find Full Text PDFProlactin-secreting adenomas, or prolactinomas, cause hypogonadism, osteoporosis, and infertility. Although dopamine agonists (DAs) are used clinically to treat prolactinoma and reduce prolactin secretion via cAMP inhibition, the precise mechanism by which DAs inhibit lactotrope proliferation has not been defined. In this study, we report that phosphatidylinositol 3-kinase (PI3K) signals through AKT and mTOR to drive proliferation of pituitary somatolactotrope GH4T2 cells.
View Article and Find Full Text PDFBackground/aim: ESE-1/Elf3 controls transformation properties in mammary epithelial cells, and is most clinically relevant in HER2 breast cancer. Herein we showed that ESE-1 knockdown inhibits tumorigenic growth in HER2, trastuzumab-resistant HR20 (derived from HER2 ER BT474) and Pool2 (derived from HER2 ER- SKBR3 cells) cell lines.
Materials And Methods: We used cell proliferation, clonogenicity, viability, and soft agar assays to measure the effects of ESE-1 knockdown in cell lines.
ESE-1/Elf3 and HER2 appear to establish a positive feedback regulatory loop, but the precise role of ESE-1 in HER2 breast tumorigenesis remains unknown. Analyzing public repositories, we found that luminal B and HER2 subtype patients with high mRNA levels displayed worse relapse free survival. We stably knocked down ESE-1 in HER2 luminal B BT474 cells and HER2 subtype SKBR3 cells, which resulted in decreased cell proliferation, colony formation, and anchorage-independent growth .
View Article and Find Full Text PDFConserved signaling pathways are critical regulators of pituitary homeostasis and, when dysregulated, contribute to adenoma formation. Pituitary adenomas are typically benign and rarely progress to malignant cancer. Pituitary and other neuroendocrine cell types often display non-proliferative responses to ERK and PI3K, in contrast to non-endocrine cell types which typically proliferate in response to ERK and PI3K activation.
View Article and Find Full Text PDFTranscription factors are master switches for various biochemical pathways. However, transcription factors involved in the pathogenesis of ovarian cancer have yet to be explored thoroughly. Therefore, in the present study, we assessed the prognostic value of the transcription factor E74-like factor 3 (ELF3) identified via transcriptome profiling of the epithelial components of microdissected ovarian tumor samples isolated from long- and short-term survivors and determined its roles in ovarian cancer pathogenesis.
View Article and Find Full Text PDFMicrobubbles interact with ultrasound to induce transient microscopic pores in the cellular plasma membrane in a highly localized thermo-mechanical process called sonoporation. Theranostic applications of in vitro sonoporation include molecular delivery (e.g.
View Article and Find Full Text PDFSome familial platelet disorders are associated with predisposition to leukemia, myelodysplastic syndrome (MDS) or dyserythropoietic anemia. We identified a family with autosomal dominant thrombocytopenia, high erythrocyte mean corpuscular volume (MCV) and two occurrences of B cell-precursor acute lymphoblastic leukemia (ALL). Whole-exome sequencing identified a heterozygous single-nucleotide change in ETV6 (ets variant 6), c.
View Article and Find Full Text PDFDysregulation of the signaling pathways that govern lactotrope biology contributes to tumorigenesis of prolactin (PRL)-secreting adenomas, or prolactinomas, leading to a state of pathological hyperprolactinemia. Prolactinomas cause hypogonadism, infertility, osteoporosis, and tumor mass effects, and are the most common type of neuroendocrine tumor. In this review, we highlight signaling pathways involved in lactotrope development, homeostasis, and physiology of pregnancy, as well as implications for signaling pathways in pathophysiology of prolactinoma.
View Article and Find Full Text PDFThe signaling pathways that govern the lactotrope-specific differentiated phenotype, and those that control lactotrope proliferation in both physiological and pathological lactotrope expansion, are poorly understood. Moreover, the specific role of MAPK signaling in lactotrope proliferation vs differentiation, whether activated phosphorylated MAPK is sufficient for prolactinoma tumor formation remain unknown. Given that oncogenic Ras mutations and persistently activated phosphorylated MAPK are found in human tumors, including prolactinomas and other pituitary tumors, a better understanding of the role of MAPK in lactotrope biology is required.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
July 2014
The E26 transformation-specific (ETS) family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis.
View Article and Find Full Text PDFMicroRNAs (miRs) are important regulators of gene expression in normal physiology and disease, and are widely misexpressed in cancer. A number of studies have identified miR-21 as an important promoter of oncogenesis. However, as is true of most miRs, the mechanisms behind the aberrant expression of miR-21 in cancer are poorly understood.
View Article and Find Full Text PDFHyperprolactinemia, usually caused by a pituitary lactotroph tumor, leads to galactorrhea and infertility. Increased prolactin (PRL) levels may be due to enhanced PRL expression or proliferation of PRL-secreting cells. We hypothesize that PRL expression and PRL-secreting cell proliferation are linked.
View Article and Find Full Text PDFBackground: The ETS family transcription factor ESE-1 is often overexpressed in human breast cancer. ESE-1 initiates transformation of MCF-12A cells via a non-transcriptional, cytoplasmic process that is mediated by a unique 40-amino acid serine and aspartic acid rich (SAR) subdomain, whereas, ESE-1's nuclear transcriptional property is required to maintain the transformed phenotype of MCF7, ZR-75-1 and T47D breast cancer cells.
Results: To map the minimal functional nuclear localization (NLS) and nuclear export (NES) signals, we fused in-frame putative NLS and NES motifs between GFP and the SAR domain.
To understand the role of microRNAs (miRNAs) in pituitary development, a group of pituitary-specific miRNAs were identified, and Dicer1 was then conditionally knocked out using the Pitx2-Cre mouse, resulting in the loss of mature miRNAs in the anterior pituitary. The Pitx2-Cre/Dicer1 mutant mice demonstrate growth retardation, and the pituitaries are hypoplastic with an abnormal branching of the anterior lobe, revealing a role for microRNAs in pituitary development. Growth hormone, prolactin, and thyroid-stimulating hormone β-subunit expression were decreased in the Dicer1 mutant mouse, whereas proopiomelanocortin and luteinizing hormone β-subunit expression were normal in the mutant pituitary.
View Article and Find Full Text PDFBackground: Recent research has yielded a wealth of data underscoring the key role of the cancer microenvironment, especially immune and stromal cells, in the progression of cancer and the development of metastases. However, the role of adjacent benign epithelial cells, which provide initial cell-cell contacts with cancer cells, in tumor progression has not been thoroughly examined. In this report we addressed the question whether benign MECs alter the transformed phenotype of human breast cancer cells.
View Article and Find Full Text PDFPit-1 is a POU-homeodomain transcription factor that dictates the ontogeny of pituitary somatotrophs, lactotrophs, and thyrotrophs through regulation of their respective protein hormone genes: GH, prolactin (PRL), and TSHbeta. Although Pit-1 threonine 220 (T220) and serine 115 are protein kinase phospho-acceptor sites, the transcriptional role of Pit-1 phosphorylation remains unclear. In the rat PRL promoter (rPRL), Ras-stimulated transcription is mediated by binding of Ets-1 and Pit-1 at a composite site (FPIV).
View Article and Find Full Text PDFThe POU-homeodomain transcription factor Pit-1 governs the pituitary cell-specific expression of Pit-1, GH, prolactin (PRL), and TSHbeta genes. Alternative splicing generates Pit-1beta, which contains a 26-amino acid beta-domain inserted at amino acid 48, in the middle of the Pit-1 transcription activation domain (TAD). Pit-1beta represses GH, PRL, and TSHbeta promoters in a pituitary-specific manner, because Pit-1beta activates these same promoters in HeLa nonpituitary cells.
View Article and Find Full Text PDFBackground: Ets transcription factors have been widely implicated in the control of tumorigenesis, with most studies suggesting tumor-promoting roles. However, few studies have examined Ets tumorigenesis-modifying functions in vivo using model genetic systems.
Methods: Using mice expressing a previously characterized Ets dominant repressor transgene in the intestinal epithelium (Villin-En/Erm), we examined the consequences of blocking endogenous Ets-mediated transcriptional activation on tumorigenesis in the ApcMin model of intestinal carcinoma.
Background: The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway plays an important role in papillary and anaplastic thyroid cancer (PTC and ATC) due to activating mutations in BRAF, RAS, or rearrangements in RET/PTC1. The objective of this study was to thoroughly test whether the BRAF V600E mutation predicts response to mitogen-activated protein kinase kinase 1/2 (MKK1/2) inhibition, as shown in other tumor types, using an authenticated panel of thyroid cancer cell lines.
Methods: PTC and ATC cells harboring distinct mutations in the MAPK pathway were treated with two different inhibitors selective for MKK1/2 (CI-1040 or U0126).