The detection and unambiguous identification of anabolic-androgenic steroid metabolites are essential in clinical, forensic, and antidoping analyses. Recently, sulfate phase II steroid metabolites have received increased attention in steroid metabolism and drug testing. In large part, this is because phase II steroid metabolites are excreted for an extended time, making them a potential long-term chemical marker of choice for tracking steroid misuse in sports.
View Article and Find Full Text PDFSteroids
February 2013
The use of "nutritional supplements" containing unapproved substances has become a regular practice in amateur and professional athletes. This represents a dangerous habit for their health once no data about toxicological or pharmacological effects of these supplements are available. Most of them are freely commercialized online and any person can buy them without medical surveillance.
View Article and Find Full Text PDFExemestane is an aromatase enzyme complex inhibitor. Its metabolism in humans is not fully described and there is only one known metabolite: 17β-hydroxyexemestane. In this work, excretion studies were performed with four volunteers aiming at the detection of new exemestane metabolites in human urine by gas chromatography coupled to mass spectrometry (GC-MS) after enzymatic hydrolysis and liquid-liquid extraction.
View Article and Find Full Text PDFTrimethylsilylation of anabolic agents and their metabolites is frequently achieved by using the derivatization mixture N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA)/NH(4)I/2-mercaptoethanol. Nevertheless, artifacts were formed when this mixture was employed in the monitoring of exemestane and its main metabolite 17β-hydroxyexemestane prior to GC-MS analysis. These artifacts were identified as the N-methyltrifluoroacetamide (MTFA) and trimethylsiloxyethylmercapto products of the respective trimethylsilyl (TMS) derivatives.
View Article and Find Full Text PDF