Publications by authors named "Gustavo Zamberlam"

Article Synopsis
  • * The tumor identified was a sex cord-stromal (granulosa cell) tumor, and the heifer's sex chromosome type was confirmed to be XX, indicating an ovotesticular disorder of sexual development with female characteristics.
  • * This case highlights that while disorders of sexual development are common in mammals, the occurrence of gonadal tumors in these conditions is infrequent and has not been previously documented in cattle.
View Article and Find Full Text PDF

The mycotoxin deoxynivalenol (DON) is one of the most frequently occurring food contaminants. Nearly all individuals are exposed to DON, due to it widespread presence in grains and grain-based products. Chronic DON poisoning is associated with growth retardation, immunotoxicity as well as impaired reproduction and fetal development.

View Article and Find Full Text PDF

Background: Secreted frizzled-related proteins (SFRPs) comprise a family of WNT signaling antagonists whose roles in the ovary are poorly understood. Sfrp4-null mice were previously found to be hyperfertile due to an enhanced granulosa cell response to gonadotropins, leading to decreased antral follicle atresia and enhanced ovulation rates. The present study aimed to elucidate the mechanisms whereby SFRP4 antagonizes FSH action.

View Article and Find Full Text PDF

Recent reports suggest that the Hippo signaling pathway regulates testis development, though its exact roles in Sertoli cell differentiation remain unknown. Here, we examined the functions of the main Hippo pathway kinases, large tumor suppressor homolog kinases 1 and 2 (Lats1 and Lats2) in developing mouse Sertoli cells. Conditional inactivation of Lats1/2 in Sertoli cells resulted in the disorganization and overgrowth of the testis cords, the induction of a testicular inflammatory response and germ cell apoptosis.

View Article and Find Full Text PDF
Article Synopsis
  • * The role of the Hippo pathway effector yes-associated protein (YAP) has been linked to similar issues in humans and mice, prompting research into its potential involvement in COD.
  • * Recent findings show that YAP levels are significantly higher in cystic ovarian cells compared to non-cystic cells, suggesting that YAP may contribute to the development and persistence of ovarian cysts in dairy cattle.
View Article and Find Full Text PDF

Ovulatory disorders are a major cause of infertility in humans as well as economically important species. In physiological conditions, the LH surge induces the expression of epidermal growth factor (EGF)-like ligands that activate the EGR receptor (EGFR) and subsequently the mitogen-activated protein kinase (MAPK) pathway. The magnitude and duration of MAPK phosphorylation are regulated by dual-specificity phosphatases (DUSPs).

View Article and Find Full Text PDF

The cortex of the adrenal gland is organized into concentric zones that produce distinct steroid hormones essential for body homeostasis in mammals. Mechanisms leading to the development, zonation and maintenance of the adrenal cortex are complex and have been studied since the 1800s. However, the advent of genetic manipulation and transgenic mouse models over the past 30 years has revolutionized our understanding of these mechanisms.

View Article and Find Full Text PDF

The molecular mechanisms that drive the granulosa cells' (GC) differentiation into a more estrogenic phenotype during follicular divergence and establishment of follicle dominance have not been completely elucidated. The main Hippo signaling effector, YAP, has, however, emerged as a potential key player to explain such complex processes. Studies using rat and bovine GC demonstrate that, in conditions where the expression of the classic YAP-TEAD target gene tissue growth factor () is augmented, expression and activity and, consequently, estradiol (E2) secretion are reduced.

View Article and Find Full Text PDF

Recent conditional knockout of core components of the Hippo signaling pathway in the adrenal gland of mice has demonstrated that this pathway must be tightly regulated to ensure proper development and maintenance of the adrenal cortex. We report herein that the most upstream kinases of the pathway, the mammalian STE20-like protein kinases 1 and 2 (MST1and MST2, respectively), are expressed in the mouse adrenal cortex with MST2 expression being restricted to the zona glomerulosa (zG). To further explore the role of Hippo signaling in adrenocortical cells, we conditionally deleted in steroidogenic cells using an Nr5a1-cre strain ( -cre).

View Article and Find Full Text PDF

Hippo signaling plays an essential role in the development of numerous tissues. Although it was previously shown that the transcriptional effectors of Hippo signaling Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) can fine-tune the regulation of sex differentiation genes in the testes, the role of Hippo signaling in testis development remains largely unknown. To further explore the role of Hippo signaling in the testes, we conditionally deleted the key Hippo kinases large tumor suppressor homolog kinases 1 and -2 ( and , two kinases that antagonize YAP and TAZ transcriptional co-regulatory activity) in the somatic cells of the testes using an -cre strain (;;-cre).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how YAP (yes-associated protein 1) activity in the corpus luteum (CL) of pregnant ewes is influenced by early pregnancy and metabolic disorders.
  • It found that early pregnancy changes YAP expression and activity in the CL but not in the endometrium, indicating its specific role in the CL for pregnancy maintenance.
  • Additionally, negative energy balance (NEB) from fasting impacted YAP activity in the CL during the first week of pregnancy, suggesting that nutritional status may affect pregnancy outcomes.
View Article and Find Full Text PDF

Purpose: To determine if the inhibition of the interaction between the Hippo effector YAP or its transcriptional co-activator TAZ with the TEAD family of transcription factors is critical for the cumulus expansion-related events induced by the EGF network in cumulus-oocyte complexes (COCs).

Methods: We performed a series of experiments using immature bovine COCs subjected to an IVM protocol for up 24 h in which cumulus expansion was stimulated with EGF recombinant protein or FSH.

Results: The main results indicated that EGFR activity stimulation in bovine cumulus cells (CC) increases mRNA levels encoding the classic YAP/TAZ-TEAD target gene CTGF.

View Article and Find Full Text PDF

The Hippo transcriptional coactivators YAP and TAZ exert critical roles in morphogenesis, organ size determination and tumorigenesis in many tissues. Although Hippo kinase cascade activity was recently reported in the anterior pituitary gland in mice, the role of the Hippo effectors in regulating gonadotropin production remains unknown. The objective of this study was therefore to characterize the roles of YAP and TAZ in gonadotropin synthesis and secretion.

View Article and Find Full Text PDF

Failure to ovulate is a major cause of infertility. The critical pathway that induces ovulation involves the EGF and MAPK phosphorylation, but studies in rodents have suggested that the Hippo activator, YAP, is also involved. It is unknown whether YAP-dependent transcriptional activity is important for the LH- or EGF-induced ovulatory cascade in monovulatory species such as the cow.

View Article and Find Full Text PDF
Article Synopsis
  • WNT signaling is crucial for various ovarian functions such as follicle development and ovulation, and SFRPs, like Sfrp4, act as antagonists to this pathway.
  • In a study using Sfrp4-null female mice, researchers found these mice had larger litter sizes, attributed to reduced atresia of antral follicles, which increased ovulatory rates without affecting corpus luteum functions.
  • The hyperfertility observed in Sfrp4-null mice is linked to heightened responsiveness of granulosa cells to hormones FSH and LH, suggesting that SFRP4 normally moderates these cells' sensitivity and impacts overall fertility outcomes.
View Article and Find Full Text PDF

The generation of free-radicals such as nitric oxide has been implicated in the regulation of ovarian function, including ovulation. Tissues that generate nitric oxide typically generate another free-radical gas, hydrogen sulfide (HS), although little is known about the role of HS in ovarian function. The hypothesis of this study was that HS regulates ovulation.

View Article and Find Full Text PDF

Wnt4 and Wnt5a have well-established roles in the embryonic development of the female reproductive tract, as well as in implantation, decidualization, and ovarian function in adult mice. Although these roles appear to overlap, whether Wnt5a and Wnt4 are functionally redundant in these tissues has not been determined. We addressed this by concomitantly inactivating Wnt4 and Wnt5a in the Müllerian mesenchyme and in ovarian granulosa cells by crossing mice bearing floxed alleles to the Amhr2cre strain.

View Article and Find Full Text PDF

Whereas the roles of the canonical wingless-type MMTV (mouse mammary tumor virus) integration site family (WNT) signaling pathway in the regulation of ovarian follicle growth and steroidogenesis are now established, noncanonical WNT signaling in the ovary has been largely overlooked. Noncanonical WNTs, including WNT5a and WNT11, are expressed in granulosa cells (GCs) and are differentially regulated throughout follicle development, but their physiologic roles remain unknown. Using conditional gene targeting, we found that GC-specific inactivation ofWnt5a(but notWnt11) results in the female subfertility associated with increased follicular atresia and decreased rates of ovulation.

View Article and Find Full Text PDF

Background: Alopecia X in dogs is a noninflammatory alopecia that may be caused by a hormonal dysfunction. It may be similar to androgenic alopecia in men that is caused by the effect of dihydrotestosterone (DHT). The 5α-reductase isoenzymes, 5αR1 and 5αR2, and a recently described 5αR3, are responsible for the conversion of testosterone into DHT.

View Article and Find Full Text PDF

The WNT family has been implicated in follicular development in rodents, however, the role of WNTs in the follicle of monovulatory species is poorly understood. The objective of this study was to determine the potential roles of WNTs in bovine granulosa cell function. Cells cultured in serum-free medium expressed mRNA encoding WNT2B, WNT5B and WNT5A.

View Article and Find Full Text PDF

Although the various members of the fibroblast growth factor (FGF) family are generally mitotic, one member, FGF18, has been shown to increase the rate of apoptosis of ovarian granulosa cells. In the present study, we first determined whether granulosa cells express FGF18 and we then explored the mechanism through which FGF18 increases apoptosis in vitro. Under culture conditions that favored estradiol secretion and CYP19A1 expression, granulosa FGF18 mRNA levels were barely detectable; however, withdrawing gonadotropic support (follicle-stimulating hormone or insulin-like growth factor 1) reduced levels of CYP19A1 mRNA and increased abundance of mRNA encoding the death ligand FASLG and FGF18.

View Article and Find Full Text PDF

In rabbits and rodents, nitric oxide (NO) is generally considered to be critical for ovulation. In monovulatory species, however, the importance of NO has not been determined, nor is it clear where in the preovulatory cascade NO may act. The objectives of this study were (1) to determine if nitric oxide synthase (NOS) enzymes are regulated by luteinizing hormone (LH) and (2) to determine if and where endogenous NO is critical for expression of genes essential for the ovulatory cascade in bovine granulosa cells in serum-free culture.

View Article and Find Full Text PDF

The ovarian promoter of the primate and rodent genes encoding cytochrome P450 aromatase (CYP19A1) are robustly responsive to forskolin in luteinized cell models, whereas the ruminant ovarian promoter is minimally active. We explored this discrepancy by investigating the activity of the bovine ovarian promoter in two bovine granulosa cell models, luteinizing and non-luteinizing cells in vitro. In non-luteinizing cells, both FSH and IGF1 increased abundance of transcripts derived from the ovarian promoter.

View Article and Find Full Text PDF

Angiotensin II (AGT-2) induces follicular prostaglandin release in a number of species and ovulation in rabbits. Conversely, AGT-2 antagonists block ovulation in cattle. To determine the mechanism of action of AGT-2, we used a bovine granulosa cell model in which luteinizing hormone (LH) increased the expression of genes essential for ovulation in a time- and dose-dependent manner.

View Article and Find Full Text PDF

Nitric oxide (NO) is a potential regulator of ovarian follicle growth, and ovarian granulosa cells reportedly generate NO in response to gonadotrophins, suggesting that the regulated form of nitric oxide synthase (iNOS) is present. The objectives of the present study were to gain insight into the expression and role of iNOS in the follicle. Messenger RNA encoding iNOS was detected in granulosa cells, and abundance was higher in growing dominant follicles compared to subordinate follicles (P<0.

View Article and Find Full Text PDF