Histopathological studies revealed that progressive neuropathies including Alzheimer, and Prion diseases among others, include accumulations of misfolded proteins intracellularly, extracellularly, or both. Experimental evidence suggests that among the accumulated misfolded proteins, small soluble oligomeric conformers represent the most neurotoxic species. Concomitant phenomena shared by different protein misfolding diseases includes alterations in phosphorylation-based signaling pathways synaptic dysfunction, and axonal pathology, but mechanisms linking these pathogenic features to aggregated neuropathogenic proteins remain unknown.
View Article and Find Full Text PDFMounting evidence implicates chronic oxidative stress as a critical driver of the aging process. Down syndrome (DS) is characterized by a complex phenotype, including early senescence. DS cells display increased levels of reactive oxygen species (ROS) and mitochondrial structural and metabolic dysfunction, which are counterbalanced by sustained Nrf2-mediated transcription of cellular antioxidant response elements (ARE).
View Article and Find Full Text PDFDeposition of amyloid-β (Aβ), the proteolytic product of the amyloid precursor protein (APP), might cause neurodegeneration and cognitive decline in Alzheimer's disease (AD). However, the direct involvement of APP in the mechanism of Aβ-induced degeneration in AD remains on debate. Here, we analyzed the interaction of APP with heterotrimeric Go protein in primary hippocampal cultures and found that Aβ deposition dramatically enhanced APP-Go protein interaction in dystrophic neurites.
View Article and Find Full Text PDFPrion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified.
View Article and Find Full Text PDFIntracellular trafficking events powered by microtubule-based molecular motors facilitate the targeted delivery of selected molecular components to specific neuronal subdomains. Within this context, we provide a brief review of mechanisms underlying the execution of axonal transport (AT) by conventional kinesin, the most abundant kinesin-related motor protein in the mature nervous system. We emphasize the biochemical heterogeneity of this multi-subunit motor protein, further discussing its significance in light of recent discoveries revealing its regulation by various protein kinases.
View Article and Find Full Text PDFDying-back degeneration of motor neuron axons represents an established feature of familial amyotrophic lateral sclerosis (FALS) associated with superoxide dismutase 1 (SOD1) mutations, but axon-autonomous effects of pathogenic SOD1 remained undefined. Characteristics of motor neurons affected in FALS include abnormal kinase activation, aberrant neurofilament phosphorylation, and fast axonal transport (FAT) deficits, but functional relationships among these pathogenic events were unclear. Experiments in isolated squid axoplasm reveal that FALS-related SOD1 mutant polypeptides inhibit FAT through a mechanism involving a p38 mitogen activated protein kinase pathway.
View Article and Find Full Text PDFLoss of function of galactosylceramidase lysosomal activity causes demyelination and vulnerability of various neuronal populations in Krabbe disease. Psychosine, a lipid-raft-associated sphingolipid that accumulates in this disease, is thought to trigger these abnormalities. Myelin-free in vitro analyses showed that psychosine inhibited fast axonal transport through the activation of axonal PP1 and GSK3β in the axon.
View Article and Find Full Text PDFExperience of mice in a complex environment enhances neurogenesis and synaptic plasticity in the hippocampus of wild type and transgenic mice harboring familial Alzheimer's disease (FAD)-linked APPswe/PS1ΔE9. In FAD mice, this experience also reduces levels of tau hyperphosphorylation and oligomeric β-amyloid. Although environmental enrichment has significant effects on brain plasticity and neuropathology, the molecular mechanisms underlying these effects are unknown.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT).
View Article and Find Full Text PDFAlzheimer's disease (AD) and other tauopathies are characterized by fibrillar inclusions composed of the microtubule-associated protein, tau. Recently, we demonstrated that the N-terminus of tau (amino acids [aa] 2-18) in filamentous aggregates or N-terminal tau isoforms activate a signaling cascade involving protein phosphatase 1 and glycogen synthase kinase 3 that results in inhibition of anterograde fast axonal transport (FAT). We have termed the functional motif comprised of aa 2-18 in tau the phosphatase-activating domain (PAD).
View Article and Find Full Text PDFAggregated filamentous forms of hyperphosphorylated tau (a microtubule-associated protein) represent pathological hallmarks of Alzheimer's disease (AD) and other tauopathies. While axonal transport dysfunction is thought to represent a primary pathogenic factor in AD and other neurodegenerative diseases, the direct molecular link between pathogenic forms of tau and deficits in axonal transport remain unclear. Recently, we demonstrated that filamentous, but not soluble, forms of wild-type tau inhibit anterograde, kinesin-based fast axonal transport (FAT) by activating axonal protein phosphatase 1 (PP1) and glycogen synthase kinase 3 (GSK3), independent of microtubule binding.
View Article and Find Full Text PDFExperience in complex environments induces numerous forms of brain plasticity, improving structure and function. It has been long debated whether brain plasticity can be induced under neuropathological conditions, such as Alzheimer's disease (AD), to an extent that would reduce neuropathology, rescue brain structure, and restore its function. Here we show that experience in a complex environment rescues a significant impairment of hippocampal neurogenesis in transgenic mice harboring familial AD-linked mutant APPswe/PS1DeltaE9.
View Article and Find Full Text PDFAdult-onset neurodegenerative diseases (AONDs) comprise a heterogeneous group of neurological disorders characterized by a progressive, age-dependent decline in neuronal function and loss of selected neuronal populations. Alterations in synaptic function and axonal connectivity represent early and critical pathogenic events in AONDs, but molecular mechanisms underlying these defects remain elusive. The large size and complex subcellular architecture of neurons render them uniquely vulnerable to alterations in axonal transport (AT).
View Article and Find Full Text PDFSelected vulnerability of neurons in Huntington's disease suggests that alterations occur in a cellular process that is particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal models of Huntington's disease (mouse and squid), but the molecular basis of this effect remains unknown. We found that polyQ-Htt inhibited FAT through a mechanism involving activation of axonal cJun N-terminal kinase (JNK).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2009
Early Alzheimer's disease (AD) pathophysiology is characterized by synaptic changes induced by degradation products of amyloid precursor protein (APP). The exact mechanisms of such modulation are unknown. Here, we report that nanomolar concentrations of intraaxonal oligomeric (o)Abeta42, but not oAbeta40 or extracellular oAbeta42, acutely inhibited synaptic transmission at the squid giant synapse.
View Article and Find Full Text PDFThe neuropathology of Alzheimer's disease (AD) and other tauopathies is characterized by filamentous deposits of the microtubule-associated protein tau, but the relationship between tau polymerization and neurotoxicity is unknown. Here, we examined effects of filamentous tau on fast axonal transport (FAT) using isolated squid axoplasm. Monomeric and filamentous forms of recombinant human tau were perfused in axoplasm, and their effects on kinesin- and dynein-dependent FAT rates were evaluated by video microscopy.
View Article and Find Full Text PDFConventional kinesin is a major microtubule-based motor protein responsible for anterograde transport of various membrane-bounded organelles (MBO) along axons. Structurally, this molecular motor protein is a tetrameric complex composed of two heavy (kinesin-1) chains and two light chain (KLC) subunits. The products of three kinesin-1 (kinesin-1A, -1B, and -1C, formerly KIF5A, -B, and -C) and two KLC (KLC1, KLC2) genes are expressed in mammalian nervous tissue, but the functional significance of this subunit heterogeneity remains unknown.
View Article and Find Full Text PDFMost mammalian proteins undergo reversible protein modification after or during synthesis. These modifications are associated, for the most part, with changes in protein functionality. Protein phosphorylation is the most common posttranslational modification in mammalian cells, regulating critical cellular processes that include cell division, differentiation, growth, and cell-cell signaling as well as fast axonal transport (FAT).
View Article and Find Full Text PDFPresenilins (PS) play a central role in gamma-secretase-mediated processing of beta-amyloid precursor protein (APP) and numerous type I transmembrane proteins. Expression of mutant PS1 variants causes familial forms of Alzheimer's disease (FAD). In cultured mammalian cells that express FAD-linked PS1 variants, the intracellular trafficking of several type 1 membrane proteins is altered.
View Article and Find Full Text PDF1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration has been used, in various mammalian species, as an experimental model of Parkinson's disease. The pathogenesis for such pharmacologically induced Parkinson's disease involves 1-methyl-4-phenylpyridinium (MPP+), the active metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. This metabolite produces rapid degeneration of nigrostriatal dopaminergic neurons, which causes the parkinsonian syndrome.
View Article and Find Full Text PDFTau protein is a major microtubule (MT)-associated brain protein enriched in axons. Multiple functional roles are proposed for tau protein, including MT stabilization, generation of cell processes, and targeting of phosphotransferases to MTs. Recently, experiments involving exogenous tau expression in cultured cells suggested a role for tau as a regulator of kinesin-1-based motility.
View Article and Find Full Text PDFExpansion of the polyglutamine (polyQ) stretch in the androgen receptor (AR) protein leads to spinal and bulbar muscular atrophy (SBMA), a neurodegenerative disease characterized by lower motor neuron degeneration. The pathogenic mechanisms underlying SBMA remain unknown, but recent experiments show that inhibition of fast axonal transport (FAT) by polyQ-expanded proteins, including polyQ-AR, represents a new cytoplasmic pathogenic lesion. Using pharmacological, biochemical and cell biological experiments, we found a new pathogenic pathway that is affected in SBMA and results in compromised FAT.
View Article and Find Full Text PDFDown's syndrome (DS) is characterized by mental retardation and development of Alzheimer's disease (AD). Oxidative stress and mitochondrial dysfunction are both related to neurodegeneration in DS. Several genes in chromosome 21 have been linked to neuronal death, including the transcription factor ets-2.
View Article and Find Full Text PDFPolyglutamine (polyQ)-expansion diseases are dominantly inherited adult-onset neurodegenerative diseases with unknown pathogenic mechanisms. Current models for pathogenesis include potential toxic effects of polyQ proteins, interference with survival pathways and deregulated gene transcription. Recently, nuclear and aggregate-independent alterations in fast axonal transport (FAT) have been demonstrated for several different polyQ disease models.
View Article and Find Full Text PDFNeuronal transmission of information requires polarized distribution of membrane proteins within axonal compartments. Membrane proteins are synthesized and packaged in membrane-bounded organelles (MBOs) in neuronal cell bodies and later transported to axons by microtubule-dependent motor proteins. Molecular mechanisms underlying targeted delivery of MBOs to discrete axonal subdomains (i.
View Article and Find Full Text PDF