Correlations among the structure, thermal properties, and ionic conductivity of solid polymer electrolytes (SPEs) were studied using a ureasil-polyethylene oxide (U-PEO) organic-inorganic hybrid prepared according to a simple sol-gel route, employing a low molecular weight PEO macromer ( = 1900 g mol). The behavior of an amorphous sample loaded with lithium triflate (LiTFSI) at an optimum ratio between ether oxygen and lithium (EO/Li = 15) was compared with that of a semicrystalline sample prepared without salt loading. The temperature range investigated by differential scanning calorimetry (DSC), Raman spectroscopy, small angle X-ray scattering (SAXS), and complex impedance spectroscopy covered both the glass transition and the melting temperature of the U-PEO.
View Article and Find Full Text PDFIn this article, we demonstrate that each functional group of ureasil organic-inorganic hybrid (OIH) materials can act as a specific coordination site for a given active guest species, hence allowing the possibility of combining different functional properties. To illustrate this concept, the sol-gel process was used to produce diurea cross-linked siloxane-polyethylene oxide (U-PEO) and siloxane-polypropylene oxide (U-PPO) hybrid host frameworks with similar molecular weights (1900 and 2000 g mol for PEO and PPO, respectively), with Li and Eu as active guest ions providing ionic conduction and photoluminescence (PL) properties, respectively. Comparison of Fourier transform infrared spectra and small-angle X-ray scattering results for single-doped (using Li or Eu) and co-doped (using Li and Eu) U-PEO and U-PPO hosts showed that in every case, there was specific coordination of Eu by the carbonyl group of the urea bridge and of Li by ether-type oxygen of the PEO and PPO chains.
View Article and Find Full Text PDFRecent advances in nucleic acid diagnostic technologies have revolutionized microbiology by facilitating rapid, sensitive pathogen surveillance and differential diagnosis of infectious diseases. With the expansion and dissemination of genomic sequencing technology scientists are discovering new microbes at an accelerating pace. In this article we review recent progress in the field of pathogen surveillance and discovery with a specific focus on applications in the field of laboratory animal research.
View Article and Find Full Text PDF