Phys Rev E Stat Nonlin Soft Matter Phys
September 2008
In this work, the dynamic behavior of the interfaces in both the standard and random driven lattice gas models (DLG and RDLG, respectively) is investigated via numerical Monte Carlo simulations in two dimensions. These models consider a lattice gas of density rho=12 with nearest-neighbor attractive interactions between particles under the influence of an external driven field applied along one fixed direction in the case of the DLG model, and a randomly varying direction in the case of the RDLG model. The systems are also in contact with a reservoir at temperature T .
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2007
We study a model of interacting random walkers that proposes a simple mechanism for the emergence of cooperation in a group of individuals. Each individual, represented by a Brownian particle, experiences an interaction produced by the local unbalance in the spatial distribution of the other individuals. This interaction results in a nonlinear velocity driving the particle trajectories in the direction of the nearest more crowded region; the competition among different aggregating centers generates nontrivial dynamical regimes.
View Article and Find Full Text PDF