Articular cartilage and meniscus transfer and distribute mechanical loads in the knee joint. Degeneration of these connective tissues occurs during the progression of knee osteoarthritis, which affects their composition, microstructure, and mechanical properties. A deeper understanding of disease progression can be obtained by studying them simultaneously.
View Article and Find Full Text PDFInjurious loading of the joint can be accompanied by articular cartilage damage and trigger inflammation. However, it is not well-known which mechanism controls further cartilage degradation, ultimately leading to post-traumatic osteoarthritis. For personalized prognostics, there should also be a method that can predict tissue alterations following joint and cartilage injury.
View Article and Find Full Text PDFMolecular simulation users are sometimes discouraged from using specific molecular models because of the inconvenience of finding the force field parameters and preparing and validating the topology files. To facilitate this process and make the accurate anisotropic force field AUA4 available to molecular dynamics users, we have created and validated an automated topology and coordinate file creation routine for the GROMACS molecular simulation software. In the present work, we describe the AUA4, explain its particularities and how it was implemented, thoroughly validating the implementation, and for the first time, perform a molecular dynamics benchmark for this transferable force field.
View Article and Find Full Text PDFOsteoarthritis (OA) is a common musculoskeletal disease that leads to deterioration of articular cartilage, joint pain, and decreased quality of life. When OA develops after a joint injury, it is designated as post-traumatic OA (PTOA). The etiology of PTOA remains poorly understood, but it is known that proteoglycan (PG) loss, cell dysfunction, and cell death in cartilage are among the first signs of the disease.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
November 2023
Mechanical behavior of meniscus can be modeled using constitutive material models of varying complexity, such as isotropic elastic or fibril reinforced poroelastic (FRPE). However, the FRPE material is complex to implement, computationally demanding in 3D geometries, and simulation is time-consuming. Hence, we aimed to quantify the most suitable and efficient constitutive model of meniscus for simulation of cartilage responses in the knee joint during walking.
View Article and Find Full Text PDFLigaments of the knee provide stability and prevent excessive motions of the joint. Rupture of the anterior cruciate ligament (ACL), a common sports injury, results in an altered loading environment for other tissues in the joint, likely leading to their mechanical adaptation. In the collateral ligaments, the patterns and mechanisms of biomechanical adaptation following ACL transection (ACLT) remain unknown.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2023
We developed a novel knee joint model in FEBio to simulate walking. Knee cartilage was modeled using a fibril-reinforced biphasic (FRB) formulation with depth-wise collagen architecture and split-lines to account for cartilage structure. Under axial compression, the knee model with FRB cartilage yielded contact pressures, similar to reported experimental data.
View Article and Find Full Text PDFAbnormal loading of the knee due to injuries or obesity is thought to contribute to the development of osteoarthritis (OA). Small animal models have been used for studying OA progression mechanisms. However, numerical models to study cartilage responses under dynamic loading in preclinical animal models have not been developed.
View Article and Find Full Text PDFSevere joint injuries often involve cartilage defects that propagate after mechanical loading. The propagation of these lesions may contribute to the development of post-traumatic osteoarthritis (PTOA). However, the mechanisms behind their propagation remain unknown.
View Article and Find Full Text PDFExcessive tissue deformation near cartilage lesions and acute inflammation within the knee joint after anterior cruciate ligament (ACL) rupture and reconstruction surgery accelerate the loss of fixed charge density (FCD) and subsequent cartilage tissue degeneration. Here, we show how biomechanical and biochemical degradation pathways can predict FCD loss using a patient-specific finite element model of an ACL reconstructed knee joint exhibiting a chondral lesion. Biomechanical degradation was based on the excessive maximum shear strains that may result in cell apoptosis, while biochemical degradation was driven by the diffusion of pro-inflammatory cytokines.
View Article and Find Full Text PDFConvection-enhanced delivery is a technique to bypass the blood-brain barrier and deliver therapeutic drugs into the brain tissue. However, animal investigations and preliminary clinical trials have reported reduced efficacy to transport the infused drug in specific zones, attributed mainly to backflow, in which an annular gap is formed outside the catheter and the fluid preferentially flows toward the surface of the brain rather than through the tissue in front of the cannula tip. In this study, a three-dimensional human brain finite element model of backflow was developed to study the influence of anatomical structures during flow-controlled infusions.
View Article and Find Full Text PDFThe purpose of this proof-of-concept study was to develop three-dimensional patient-specific mechanobiological knee joint models to simulate alterations in the fixed charged density (FCD) around cartilage lesions during the stance phase of the walking gait. Two patients with anterior cruciate ligament (ACL) reconstructed knees were imaged at 1 and 3 years after surgery. The magnetic resonance imaging (MRI) data were used for segmenting the knee geometries, including the cartilage lesions.
View Article and Find Full Text PDFPost-traumatic osteoarthritis (PTOA) is associated with cartilage degradation, ultimately leading to disability and decrease of quality of life. Two key mechanisms have been suggested to occur in PTOA: tissue inflammation and abnormal biomechanical loading. Both mechanisms have been suggested to result in loss of cartilage proteoglycans, the source of tissue fixed charge density (FCD).
View Article and Find Full Text PDFCartilage provides low-friction properties and plays an essential role in diarthrodial joints. A hydrated ground substance composed mainly of proteoglycans (PGs) and a fibrillar collagen network are the main constituents of cartilage. Unfortunately, traumatic joint loading can destroy this complex structure and produce lesions in tissue, leading later to changes in tissue composition and, ultimately, to post-traumatic osteoarthritis (PTOA).
View Article and Find Full Text PDFLigaments provide stability to the human knee joint and play an essential role in restraining motion during daily activities. Compression-tension nonlinearity is a well-known characteristic of ligaments. Moreover, simpler material representations without this feature might give reasonable results because ligaments are primarily in tension during loading.
View Article and Find Full Text PDFInt J Occup Saf Ergon
December 2018
Objective: The intervertebral disc supports axial and shear forces generated during tasks such as lifting and carrying weights. The objective of this study was to determine the forces in the lumbar spine of workers carrying a bag on the head, on the shoulder and on the anterior part of the trunk.
Methods: Kinematic measurements were recorded for 10 subjects carrying bags of 10, 20 and 25 kg on each of the three aforementioned positions.
Monte Carlo simulations were performed in the isothermal-isobaric ensemble (NPT) to calculate the Henry constants of methane (CH), nitrous oxide (NO), and carbon dioxide (CO) in pure HO, amines, and alkanolamines using the classical Lorentz-Berthelot combining rules (L-B). The Henry constants of NO and CO in water are highly overestimated and motivated us to propose a new set of unlike interactions. Contrarily, the Henry constant of NO in MEA is underestimated by around 40%, and again, a new reoptimized cross unlike parameter is able to reproduce the constant to within 10%.
View Article and Find Full Text PDFAgarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage.
View Article and Find Full Text PDFMolecular dynamics and Monte Carlo simulations have been carried out to obtain thermodynamic and transport properties of the binary mixture H2O+NaCl at temperatures from T = 298 to 473 K. In particular, vapor pressures, liquid densities, viscosities, and vapor-liquid interfacial tensions have been obtained as functions of pressure and salt concentration. Several previously proposed fixed-point-charge models that include either Lennard-Jones (LJ) 12-6 or exponential-6 (Exp6) functional forms to describe non-Coulombic interactions were studied.
View Article and Find Full Text PDFMonte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase.
View Article and Find Full Text PDFA previously proposed finite element model that considers geometric and material nonlinearities and the free boundary problems that occur at the catheter tip and in the annular zone around the lateral surface of the catheter was revised and was used to fit a power-law formula to predict backflow length during infusions into brain tissue. Compared to a closed-form solution based on linear elasticity, the power-law formula for compliant materials predicted a substantial lower influence of the shear modulus and catheter radius on the backflow length, whereas the corresponding influence for stiffer materials was more consistent with the closed-form solution. The finite element model predicted decreases of the backflow length for reduction of the shear modulus for highly compliant materials (shear modulus less than 500 Pa) due to the increased area of infusion and the high fluid fraction near the infusion cavity that greatly increased the surface area available for fluid transfer and reduced the hydraulic resistance toward the tissue.
View Article and Find Full Text PDFAn important issue to be considered when studying a new drug for treatment of central nervous system (CNS) diseases is its ability to cross the blood-brain barrier (BBB) and distribute throughout the brain. As cerebrospinal fluid (CSF) has demonstrated to be an invaluable reservoir to study CNS availability of therapeutic proteins, we have developed an improved method for CSF sampling from the cisterna magna of rats. The technique enables the simple and rapid collection of adequate quantities (50-75 μl) of blood-free CSF, rendering a high percentage of animal survival (99%) without clinic or neurological consequences.
View Article and Find Full Text PDF