Metamorphosis, which depends upon a fine balance between two groups of lipid-soluble hormones such as juvenile hormones (JHs) and ecdysteroids, is an important feature in insect evolution. While it is clear that the onset of metamorphosis depends on the decrease of JH levels, the way in which these hormones exert their activities is not fully understood in Triatominae species. The discovery of a Drosophila melanogaster mutant resistant to the treatment with the JH analog methoprene, led finally to the description of the methoprene-tolerant gene in Tribolium castaneum (TcMet) as a putative JH receptor.
View Article and Find Full Text PDFMem Inst Oswaldo Cruz
September 2013
The cuticular hydrocarbons of the Triatoma sordida subcomplex (Hemiptera: Reduviidae: Triatominae) were ana-lysed by gas chromatography and their structures identified by mass spectrometry. They comprised mostly n-alkanes and methyl-branched alkanes with one-four methyl substitutions. n-alkanes consisted of a homologous series from C21-C33 and represented 33-45% of the hydrocarbon fraction; n-C29 was the major component.
View Article and Find Full Text PDFEpicuticular lipids are contact cues in intraspecific chemical communication in insects, both for aggregation and sexual behavior. Triatomine bugs are vectors of the parasite Trypanosoma cruzi, the cause of Chagas disease. In Triatoma infestans, the major epicuticular lipids are hydrocarbons, fatty alcohols, and free and esterified fatty acids.
View Article and Find Full Text PDF