Differential equations serve as models for many physical systems. But, are these equations unique? We prove here that when a 3D system of ordinary differential equations for a dynamical system is transformed to the jerk or differential form, the jerk form is preserved in relation to a given variable and, therefore, the transformed system shares the time series of that given variable with the original untransformed system. Multiple algebraically different systems of ordinary differential equations can share the same jerk form.
View Article and Find Full Text PDF