Publications by authors named "Gustavo E Sevlever"

La encefalopatía traumática crónica es una enfermedad neurodegenerativa resultante de la acumulación de numerosos traumatismos craneoencefálicos, para la cual no existe un diagnóstico en vida definitivo ni un tratamiento específico. Entre los factores de riesgo asociados se encuentran: la exposición a deportes de contacto que predisponen a traumatismos craneoencefálicos clínicos y subclínicos reiterados, la presencia de la apolipoproteína E4 y la edad. A escala microscópica, la lesión patognomónica de la enfermedad implica agregados de proteína tau fosforilada en neuronas, con o sin astrocitos en forma de espina, en las profundidades del surco cortical alrededor de un pequeño vaso sanguíneo, en lo profundo del parénquima y con un patrón irregular, que pueden estar acompañado en ocasiones de otros depósitos de proteínas anormales y prevalentes en otras entidades como placas de beta-amiloide, TDP-43 y/o alfa-sinucleína.

View Article and Find Full Text PDF

Cyclin-dependent kinase 5 (CDK5) is a protein kinase involved in neuronal homeostasis and development critical for neuronal survival. Besides, its deregulation is linked to neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases. For that reason, we aimed to generate a deficient CDK5 genetic model in neurons derived from human-induced pluripotent stem cells (hiPSCs) using CRISPR/Cas9 technology.

View Article and Find Full Text PDF

Ectopic acromegaly is a rare condition caused by extrapituitary central or peripheral neuroendocrine tumours (NET) that hypersecrete GH or, more commonly, GHRH. It affects less than 1% of acromegaly patients and a misdiagnosis of classic acromegaly can lead to an inappropriate pituitary surgery. Four types of ectopic acromegaly have been described: 1) Central ectopic GH-secretion: Careful cross-sectional imaging is required to exclude ectopic pituitary adenomas.

View Article and Find Full Text PDF

Introduction: Latin American Initiative for Lifestyle Intervention to Prevent Cognitive Decline (LatAm-FINGERS) is the first non-pharmacological multicenter randomized clinical trial (RCT) to prevent cognitive impairment in Latin America (LA). Our aim is to present the study design and discuss the strategies used for multicultural harmonization.

Methods: This 1-year RCT (working on a 1-year extension) investigates the feasibility of a multi-domain lifestyle intervention in LA and the efficacy of the intervention, primarily on cognitive function.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC) line INEUi001-A was reprogrammed from peripheral blood mononuclear cells (PBMC) using the lentiviral-hSTEMCCA-loxP vector. PBMCs were obtained from a 75- year-old female ALS/FTD disease patient carrying a heterozygous deletion within the C9ORF72 hexanucleotide repeat region resulting in a GGGGCCG sequence (∼1.16 repeats).

View Article and Find Full Text PDF

Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (hPSCs) that can differentiate into a wide range of specialized cells. Although moderate hypoxia (5% O) improves hPSC self-renewal, pluripotency, and cell survival, the effect of acute severe hypoxia (1% O) on hPSC viability is still not fully elucidated. In this sense, we explore the consequences of acute hypoxia on hPSC survival by culturing them under acute (maximum of 24 h) physical severe hypoxia (1% O).

View Article and Find Full Text PDF

The recurrence of Glioblastoma is partly attributed to the highly resistant subpopulation of glioma stem cells. A novel therapeutic approach focuses on restoring apoptotic programs in these cancer stem cells, as they are often deregulated. BH3-mimetics, targeting anti-apoptotic Bcl-2 family members, are emerging as promising compounds to sensitize cancer cells to antineoplastic treatments.

View Article and Find Full Text PDF

The analysis of morphological features of neurons derived from human pluripotent stem cells (hPSCs) is important to describe neuronal phenotypes and changes observed throughout development. Using free and easily accessible tools, we describe a protocol for the morphometric quantification of hPSCs-derived neurons in two- and three-dimensions cultures. We detail the analysis of soma area and main and secondary dendrites lengths of GFP-transfected neurons and the measurement of area and perimeter of immunostained neurospheres.

View Article and Find Full Text PDF

Despite recent advances in diagnosis and treatment, glioblastoma (GBM) represents the most common and aggressive brain tumor in the adult population, urging identification of new rational therapeutic targets. Galectins, a family of glycan-binding proteins, are highly expressed in the tumor microenvironment (TME) and delineate prognosis and clinical outcome in patients with GBM. These endogenous lectins play key roles in different hallmarks of cancer by modulating tumor cell proliferation, oncogenic signaling, migration, vascularization and immunity.

View Article and Find Full Text PDF

Cell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell death is preceded by slight morphological changes in cell shape and texture.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (hiPSC) line FLENIi001-A was reprogrammed from dermal fibroblasts using the lentiviral-hSTEMCCA-loxP vector. Fibroblasts were obtained from a skin biopsy of a 72-year-old Caucasian male familial Alzheimer's disease patient carrying the T119I mutation in the PSEN1 gene. PSEN1 genotype was maintained and stemness and pluripotency confirmed in the FLENIi001-A hiPSC line.

View Article and Find Full Text PDF

Human pluripotent stem cells (hPSCs), like embryonic (hESCs) and induced pluripotent stem cells (hiPSCs), exhibit an unusual cell cycle structure characterized by a short G1 phase and cells being most of time in S phase. hPSCs are receptive to differentiation cues during their transition through G1 phase when lineage determination is decided. Although several MicroRNAs (miRNAs) have been shown to target transcripts that directly or indirectly coordinate the cell cycle of pluripotent cells, its temporal expression profile along hPSCs cell cycle remains poorly characterized.

View Article and Find Full Text PDF

Human embryonic and induced pluripotent stem cells (hESCs and hiPSCs) are self-renewing human pluripotent stem cells (hPSCs) that can differentiate to a wide range of specialized cells. Notably, hPSCs enhance their undifferentiated state and self-renewal properties in hypoxia (5% O). Although thoroughly analyzed, hypoxia implication in hPSCs death is not fully determined.

View Article and Find Full Text PDF

Tau accumulation affecting white matter tracts is an early neuropathological feature of late-onset Alzheimer's disease (LOAD). There is a need to ascertain methods for the detection of early LOAD features to help with disease prevention efforts. The microstructure of these tracts and anatomical brain connectivity can be assessed by analyzing diffusion MRI (dMRI) data.

View Article and Find Full Text PDF

The stem cell niche has a strong influence in the differentiation potential of human pluripotent stem cells with integrins playing a major role in communicating cells with the extracellular environment. However, it is not well understood how interactions between integrins and the extracellular matrix are involved in cardiac stem cell differentiation. To evaluate this, we performed a profile of integrins expression in two stages of cardiac differentiation: mesodermal progenitors and cardiomyocytes.

View Article and Find Full Text PDF

Background: The essentially unlimited expansion potential and the pluripotency of human embryonic stem cells (hESCs) make them attractive for cell-based therapeutic purposes. Although hESCs can indefinitely proliferate in culture, unlike transformed cancer cells, they are endowed with a cell-intrinsic property termed mitochondrial priming that renders them highly sensitive to apoptotic stimuli. Thus, all attempts to broaden the insights into hESCs apoptosis may be helpful for establishing pro-survival strategies valuable for its in vitro culture and further use in clinical applications.

View Article and Find Full Text PDF

Glioblastoma multiforme is the most aggressive primary brain tumor. Current knowledge suggests that the growth and recurrence of these tumors are due in part to the therapy-resistant glioma stem cell subpopulation, which possesses the ability for self-renewal and proliferation, driving tumor progression. In many cancers, the p16-CDK4/6-pRb pathway is disrupted in favor of cell cycle progression.

View Article and Find Full Text PDF

Deep learning is a significant step forward for developing autonomous tasks. One of its branches, computer vision, allows image recognition with high accuracy thanks to the use of convolutional neural networks (CNNs). Our goal was to train a CNN with transmitted light microscopy images to distinguish pluripotent stem cells from early differentiating cells.

View Article and Find Full Text PDF

Cell reprogramming has been well described in mouse and human cells. The expression of specific microRNAs has demonstrated to be essential for pluripotent maintenance and cell differentiation, but not much information is available in domestic species. We aim to generate horse iPSCs, characterize them and evaluate the expression of different microRNAs (miR-302a,b,c,d, miR-205, miR-145, miR-9, miR-96, miR-125b and miR-296).

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) obtained from pluripotent stem cells (PSCs) constitute an interesting alternative to classical MSCs in regenerative medicine. Among their many mechanisms of action, MSC extracellular vesicles (EVs) are a potential suitable substitute for MSCs in future cell-free-based therapeutic approaches. Unlike cells, EVs do not elicit acute immune rejection, and they can be produced in large quantities and stored until ready to use.

View Article and Find Full Text PDF

Unlabelled: Human pluripotent stem cells (hPSCs), including embryonic and induced pluripotent stem cells (hESCs and hiPSCs) show unique cell cycle characteristics, such as a short doubling time due to an abbreviated G1 phase. Whether or not the core cell cycle machinery directly regulates the stemness and/or the differentiation potential of hPSCs remains to be determined. To date, several scenarios describing the atypical cell cycle of hPSCs have been suggested, and therefore there is still controversy over how cyclins, master regulators of the cell cycle, are expressed and regulated.

View Article and Find Full Text PDF

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression related to many cellular functions. We performed a small-RNAseq analysis of cardiac differentiation from pluripotent stem cells. Our analyses identified some new aspects about microRNA expression in this differentiation process.

View Article and Find Full Text PDF

Please note that Carolina Blüguermann's surname was misspelled (as Blugüermann) in this article as originally published.

View Article and Find Full Text PDF

Leukemia inhibitory factor (LIF) is a growth factor with pleiotropic biological functions. It has been reported that LIF acts at different stages during mesoderm development. Also, it has been shown that LIF has a cytoprotective effect on neonatal murine cardiomyocytes (CMs) in culture, but little is known about the role of LIF during human cardiogenesis.

View Article and Find Full Text PDF

High-grade gliomas are the most prevalent and lethal primary brain tumors. They display a hierarchical arrangement with a population of self-renewing and highly tumorigenic cells called cancer stem cells. These cells are thought to be responsible for tumor recurrence, which make them main candidates for targeted therapies.

View Article and Find Full Text PDF