Lipid oxidation is the main hurdle for omega-3 fatty acid enrichment in food and beverages. Fat oxidation reduces the quality and safety of supplemented products. A tuna oil-in-water emulsion (20%v/v) was exposed to iron-induced oxidation.
View Article and Find Full Text PDFFish- or algal oils have become a common component of infant formula products for their high docosahexaenoic acid (DHA) content. DHA is widely recognized to contribute to the normal development of the infant, and the European Commission recently regulated the DHA content in infant formulas. For many manufacturers of first-age early life nutrition products, a higher inclusion level of DHA poses various challenges.
View Article and Find Full Text PDFLipid oxidation has implications on food, cosmetics and other fat containing products. Fatty acid autoxidation alters both the quality and safety of these products. Efficient and fast methods are needed to track lipid oxidation in complex systems.
View Article and Find Full Text PDFOxidation of omega-3 fatty acids is a major limitation on its enrichment in food and beverages. An efficient and simple method to monitor lipid oxidation in complex systems is essential to limit lipid oxidation during formulation and processing. Fish oil-in-water emulsions (20% v/v) were exposed to iron or free radical initiated oxidation.
View Article and Find Full Text PDFJ Colloid Interface Sci
November 2018
Hypothesis: Oleosomes are stabilized by a complex outer phospholipid-protein-layer. To improve understanding of its structure and stabilization mechanism, this shell has to be studied in extracellular native conditions. This should be possible by SANS using contrast variation.
View Article and Find Full Text PDFPlant oleosomes are uniquely emulsified lipid reservoirs that serve as the primary energy source during seed germination. These oil bodies undergo significant changes regarding their size, composition and structure during normal seedling development; however, a detailed characterization of these oil body dynamics, which critically affect oil body extractability and nutritional value, has remained challenging because of a limited ability to monitor oil body location and composition during germination in situ Here, we demonstrate via in situ, label-free imaging that oil bodies are highly dynamic intracellular organelles that are morphologically and biochemically remodelled extensively during germination. Label-free, coherent Raman microscopy (CRM) combined with bulk biochemical measurements revealed the temporal and spatial regulation of oil bodies in native soya bean cotyledons during the first eight days of germination.
View Article and Find Full Text PDFLipid storage in plants is achieved among all plant species by formation of oleosomes, enclosing oil (triacylglycerides) in small subcellular droplets. Seeds are rich in this pre-emulsified oil to provide a sufficient energy reservoir for growing. The triacylglyceride core of the oleosomes is surrounded by a phospholipid monolayer containing densely packed proteins called oleosins.
View Article and Find Full Text PDFSoy milk is a highly stable emulsion mainly due to the presence of oleosomes, which are oil bodies and function as lipid storage organelles in plants, e.g., in seeds.
View Article and Find Full Text PDFSoy milk is a highly stable emulsion, the stability being mainly due to the presence of oleosomes or oil bodies, spherical structures filled with triacylglycerides (TAGs) and surrounded by a monolayer of phospholipids and proteins called oleosins. For oleosomes purified from raw soymilk, surface pressure investigations and Brewster angle microscopy have been performed to unveil their adsorption, rupture and structural changes over time at different subphase conditions (pH, ionic strength). Such investigations are important for (industrial) food applications of oleosomes, but are also useful for the understanding of the general behavior of proteins and phospholipids at interfaces.
View Article and Find Full Text PDFThe steroid hormone dehydroepiandrosterone (DHEA) has beneficial effects on vascular function, survival of neurons, and fatty acid metabolism. However, a specific receptor for DHEA has not been identified to date. Here, we describe the synthesis of a photoreactive DHEA derivative (Photo-DHEA).
View Article and Find Full Text PDFThe androgen dehydroepiandrosterone (DHEA) has been reported to protect neuronal cells against dysfunction and apoptosis. Several signaling pathways involved in these effects have been described but little is known about the intracellular trafficking of DHEA. We describe design, synthesis and characterization of DHEA-Bodipy, a novel fluorescent DHEA analog.
View Article and Find Full Text PDF