Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels.
View Article and Find Full Text PDFAn experimental platform based on scaled-down unit operations combined in a plug-and-play manner enables easy and highly flexible testing of advanced biocatalytic process options such as in situ product removal (ISPR) process strategies. In such a platform, it is possible to compartmentalize different process steps while operating it as a combined system, giving the possibility to test and characterize the performance of novel process concepts and biocatalysts with minimal influence of inhibitory products. Here the capabilities of performing process development by applying scaled-down unit operations are highlighted through a case study investigating the asymmetric synthesis of 1-methyl-3-phenylpropylamine (MPPA) using ω-transaminase, an enzyme in the sub-family of amino transferases (ATAs).
View Article and Find Full Text PDFAn attractive option to produce chiral amines of industrial importance is through asymmetric synthesis using ω-transaminase. However, reaching high yields often requires a strategy for shifting the equilibrium position. This paper describes a novel strategy for handling this problem.
View Article and Find Full Text PDFImmobilization of Escherichia coli cells containing a ω-transaminase was carried out by flocculation with chitosan and the preparation was used in asymmetric synthesis of (S)-4'-cyano-α-methylbenzylamine, recycled in five consecutive batches. Chitosans with different molecular weights and degrees of acetylation were compared and effects of varying the chitosan properties, cell concentration and ratio of cells to chitosan were studied. Immobilization was achieved by increasing the pH to slightly alkaline, which induced the formation of large fast sedimenting flocs.
View Article and Find Full Text PDF