Publications by authors named "Gustaf Olsson"

Digitalisation has developed over half a century and is one of the global trends defining society of today and future. Digitalisation is envisioned to help water utilities to become: i) community orientated and digitally integrated with customers and society; ii) digitally transformed end-to-end throughout the value-chain and interconnected between business units; iii) predictive & proactive, utilizing models and applications for control and decision support; iv) visually communicative with customers and society, creating customers aware of the value of water; and financially sustainable by optimal operation (OPEX), and sustainable investments (CAPEX). Digitalisation is a process for business development, where digital solutions are used for automation and innovation.

View Article and Find Full Text PDF

Oxytocin imprinted polymer nanoparticles were synthesized by glass bead supported solid phase synthesis, with NMR and molecular dynamics studies used to investigate monomer-template interactions. The nanoparticles were characterized by dynamic light scattering, scanning- and transmission electron microscopy and X-ray photoelectron spectroscopy. Investigation of nanoparticle-template recognition using quartz crystal microbalance-based studies revealed sub-nanomolar affinity, ≈ 0.

View Article and Find Full Text PDF

Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.

View Article and Find Full Text PDF

Molecular dynamics (MD) simulations of prepolymerization mixtures can provide detailed insights concerning the molecular-level mechanisms underlying the performance of molecularly imprinted polymers (MIPs) and can be used for the in silico screening of candidate polymer systems. Here, we describe the use of MD simulations of all-atom, all-component MIP prepolymerization mixtures and procedures for the evaluation of the simulation data using the Amber simulation software suite.

View Article and Find Full Text PDF

This study highlights the need to increase our understanding of the interplay between sensor drift and the performance of the automatic control system. The impact from biased sensors on the automatic control systems is rarely considered when different control strategies are assessed in water resource recovery facilities. Still, the harsh measurement environment with negative effects on sensor data quality is widely acknowledged.

View Article and Find Full Text PDF

Microglial cells are affected in Alzheimer's disease (AD) and interact with amyloid-beta (Aβ) plaques. Apart from memory loss, depression is common in patients with AD. Electroconvulsive therapy (ECT) is an anti-depressive treatment that may stimulate microglia, induce neuroinflammation and alter the levels of soluble Aβ, but the effects of ECT on microglia and Aβ aggregation in AD are not known.

View Article and Find Full Text PDF

The design of artificial oxyanion receptors with switchable ion preference is a challenging goal in host-guest chemistry. We here report on molecularly imprinted polymers (MIPs) with an external phospho-sulpho switch driven by small molecule modifiers. The polymers were prepared by hydrogen bond-mediated imprinting of the mono- or dianions of phenyl phosphonic acid (PPA), phenyl sulfonic acid (PSA), and benzoic acid (BA) using -3,5-bis-(trifluoromethyl)-phenyl--4-vinylphenyl urea () as the functional host monomer.

View Article and Find Full Text PDF

This paper presents a modelling study aimed at minimizing the environmental foot print of a membrane bioreactor (MBR) for wastewater treatment. Specifically, an integrated model for MBR was employed in view of the management optimization of an MBR biological nutrient removal (BNR) pilot plant in terms of operational costs and direct greenhouse gases emissions. The influence of the operational parameters (OPs) on performance indicators (PIs) was investigated by adopting the Extended-FAST sensitivity analysis method.

View Article and Find Full Text PDF

A family of non-ionic deep eutectic liquids has been developed based upon mixtures of solid -alkyl derivatives of urea and acetamide that in some cases have melting points below room temperature. The eutectic behaviour and physical characteristics of a series of eleven eutectic mixtures are presented, along with a molecular dynamics study-supported hypothesis for the origin of the non-ideal mixing of these substances. Their use as solvents in applications ranging from natural product extraction to organic and polymer synthesis are demonstrated.

View Article and Find Full Text PDF

Instrumentation, control and automation (ICA) are currently applied throughout the urban water system at water treatment plants, in water distribution networks, in sewer networks, and at wastewater treatment plants. However, researchers and practitioners specialising in respective urban water sub-systems do not frequently interact, and in most cases to date the application of ICA has been achieved in silo. Here, we review start-of-the-art ICA throughout these sub-systems, and discuss the benefits achieved in terms of performance improvement, cost reduction, and more importantly, the enhanced capacity of the existing infrastructure to cope with increased service demand caused by population growth and continued urbanisation.

View Article and Find Full Text PDF

Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis.

View Article and Find Full Text PDF

Renewable energy technologies can make a major contribution to universal access to both energy and water in a sustainable way. In many regions of the world with energy poverty there are abundant renewable energy sources. In this review it is described how solar photovoltaic (PV) and wind energy have a huge potential to supply clean water, in particular in areas with no grid connection.

View Article and Find Full Text PDF

Water resources and water quality are closely related to oil exploration, refining and distribution. Since oil products provide over 90% of transport energy in almost all countries it is apparent that any oil operation is an inherent risk for water resources. Since water supplies will be increasingly stressed as a consequence of climate change and population increase the environmental risks associated with oil exploration may intensify.

View Article and Find Full Text PDF

The present study explores the interlinkages among the operational variables of a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) membrane bioreactor (MBR) pilot plant. Specifically, dedicated experimental tests were carried out with the final aim to find-out a constitutive relationship among operational costs (OCs), effluent quality index (EQI), effluent fines (EF). Greenhouse gas (GHG) emissions were also included in the study.

View Article and Find Full Text PDF

All-component molecular dynamics studies were used to probe a library of oseltamivir molecularly imprinted polymer prepolymerization mixtures. Polymers included one of five functional monomers (acrylamide, hydroxyethylmethacrylate, methacrylic acid, 2-(triflouromethyl)acrylic acid, 4-vinylpyridine) and one of three porogens (acetonitrile, chloroform, methanol) combined with the crosslinking agent ethylene glycol dimethacrylate and initiator 2,2'-azobis(2-methylpropionitrile). Polymers were characterized by nitrogen gas sorption measurements and SEM, and affinity studies performed using radioligand binding in various media.

View Article and Find Full Text PDF

Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps.

View Article and Find Full Text PDF

The development of in silico strategies for the study of the molecular imprinting process and the properties of molecularly imprinted materials has been driven by a growing awareness of the inherent complexity of these systems and even by an increased awareness of the potential of these materials for use in a range of application areas. Here we highlight the development of theoretical and computational strategies that are contributing to an improved understanding of the mechanisms underlying molecularly imprinted material synthesis and performance, and even their rational design.

View Article and Find Full Text PDF

Aerobic granulation is increasingly used in wastewater treatment due to its unique physical properties and microbial functionalities. Granule size defines the physical properties of granules based on biomass accumulation. This study aims to determine the profile of size development under two physicochemical conditions.

View Article and Find Full Text PDF

Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies.

View Article and Find Full Text PDF

The interactions between each component of the pre-polymerisation mixtures used in the synthesis of molecularly imprinted polymers (MIP) specific for 1,2,3,4,5-pentachlorobenzene (1) and 1,2,3-trichlorobenzene (2) were examined in four molecular dynamics simulations. These simulations revealed that the relative frequency of functional monomer-template (FM-T) interactions was consistent with results obtained by the synthesis and evaluation of the actual MIPs. The higher frequency of 1 interaction with trimethylstyrene (TMS; 54.

View Article and Find Full Text PDF

The role of the structural diversity of the widely used anticoagulant drug warfarin on its distribution in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) bilayer membranes was investigated using a series of both restrained (umbrella sampling) and unrestrained molecular dynamics simulations. Data collected from unrestrained simulations revealed favorable positions for neutral isomers of warfarin, the open side chain form (OCO), and the cyclic hemiketal (CCO), along the bilayer normal close to the polar headgroup region and even in the relatively distant nonpolar lipid tails. The deprotonated open side chain form (DCO) was found to have lower affinity for the DOPC bilayer membrane relative to the neutral forms, with only a small fraction interacting with the membrane, typically within the polar headgroup region.

View Article and Find Full Text PDF

Polymeric sorbents targeting endocrine-disrupting estrogen active compounds (EAC) were prepared by terpolymer imprinting using 17β-estradiol (E2) as template. From a group of eight functional monomers representing Brønsted acids, bases, hydrogen-bond donors and acceptors, as well as π-interacting monomers, a terpolymer library that comprises all possible binary combinations of the functional monomers was prepared. Binding tests revealed that imprinted polymers exhibit a markedly higher affinity for E2 compared to nonimprinted polymers (NIPs) or polymers prepared by using single functional monomers.

View Article and Find Full Text PDF

High PHA production and storage using palm oil mill effluent (POME) was investigated using a laboratory batch Bio-PORec® system under aerobic-feeding conditions. Results showed that maximum PHA was obtained at a specific rate (q(p)) of 0.343 C-mol/C-molh when air was supplied at 20 ml/min.

View Article and Find Full Text PDF

A series of molecular dynamics simulations of prepolymerization mixtures for phenylalanine anilide imprinted co-(ethylene glycol dimethacrylate-methacrylic acid) molecularly imprinted polymers have been employed to investigate the mechanistic basis for template selective recognition in these systems. This has provided new insights on the mechanisms underlying template recognition, in particular the significant role played by the crosslinking agent. Importantly, the study supports the occurrence of template self-association events that allows us to resolve debate between the two previously proposed models used to explain this system's underlying recognition mechanisms.

View Article and Find Full Text PDF