Anatomical, metabolic and microbial factors were identified that contribute to sequential freezing in wheat leaves and likely contribute to supercooling in the youngest leaves and potentially meristematic regions. Infrared thermography (IR) has been used to observe wheat leaves freezing independently and in an age-related sequence with older leaves freezing first. To determine mechanisms that might explain this sequence of freezing several analytical approaches were used: (1) The size of xylem vessels, in proximity to where freezing initiated, was measured to see if capillary freezing point depression explained sequential freezing.
View Article and Find Full Text PDFMeaningful improvements in winter cereal cold hardiness requires a complete model of freezing behaviour in the critical crown organ. Magnetic resonance microimaging diffusion-weighted experiments provided evidence that cold acclimation decreased water content and mobility in the vascular transition zone (VTZ) and the intermediate zone in rye (Secale cereale L. Hazlet) compared with wheat (Triticum aestivum L.
View Article and Find Full Text PDFAn extremely high resolution infrared camera demonstrated various freezing events in wheat under natural conditions. Many of those events shed light on years of misunderstanding regarding freezing in small grains. Infrared thermography has enhanced our knowledge of ice nucleation and propagation in plants through visualization of the freezing process.
View Article and Find Full Text PDFFreezing events that occur when plants are actively growing can be a lethal event, particularly if the plant has no freezing tolerance. Such frost events often have devastating effects on agricultural production and can also play an important role in shaping community structure in natural populations of plants, especially in alpine, sub-arctic, and arctic ecosystems. Therefore, a better understanding of the freezing process in plants can play an important role in the development of methods of frost protection and understanding mechanisms of freeze avoidance.
View Article and Find Full Text PDFHow plants adapt to freezing temperatures and acclimate to survive the formation of ice within their tissues has been a subject of study for botanists and plant scientists since the latter part of the 19th century. In recent years, there has been an explosion of information on this topic and molecular biology has provided new and exciting opportunities to better understand the genes involved in cold adaptation, freezing response and environmental stress in general. Despite an exponential increase in our understanding of freezing tolerance, understanding cold hardiness in a manner that allows one to actually improve this trait in economically important crops has proved to be an elusive goal.
View Article and Find Full Text PDFExposure of flowering cereal crops to frost can cause sterility and grain damage, resulting in significant losses. However, efforts to breed for improved low temperature tolerance in reproductive tissues (LTR tolerance) has been hampered by the variable nature of natural frost events and the confounding effects of heading time on frost-induced damage in these tissues. Here, we establish conditions for detection of LTR tolerance in barley under reproducible simulated frost conditions in a custom-built frost chamber.
View Article and Find Full Text PDFBackground And Aims: Cryopreservation is a practical method of preserving plant cell cultures and their genetic integrity. It has long been believed that cryopreservation of plant cell cultures is best performed with cells at the late lag or early exponential growth phase. At these stages the cells are small and non-vacuolated.
View Article and Find Full Text PDFA cDNA (BG-15) was isolated through differential screening of a cDNA library made from an ABA-treated bromegrass (Bromus inermis Leyss) suspension cell culture. The 819 bp pair cDNA encoded a 174 amino acid polypeptide with a calculated molecular mass of 18.08 kD and isolectric point of 7.
View Article and Find Full Text PDFInfrared video thermography was used to observe ice nucleation temperatures, patterns of ice formation, and freezing rates in nonacclimated and cold acclimated leaves of a spring (cv Quest) and a winter (cv Express) canola (Brassica napus). Distinctly different freezing patterns were observed, and the effect of water content, sugars, and soluble proteins on the freezing process was characterized. When freezing was initiated at a warm subzero temperature, ice growth rapidly spread throughout nonacclimated leaves.
View Article and Find Full Text PDFThe objective was to investigate the expression of a lipid transfer protein gene (LTP) both in bromegrass (Bromus inermis) cells and seedlings after exposure to abiotic stresses, abscisic acid (ABA), anisomycin, and sphingosine. A full-length cDNA clone BG-14 isolated from bromegrass suspension cell culture encodes a polypeptide of 124 amino acids with typical LTP characteristics, such as a conserved arrangement of cysteine residues. During active stages of cold acclimation LTP expression was up-regulated, whereas at the final stage of cold acclimation LTP transcript level declined to pre-acclimation level.
View Article and Find Full Text PDFDry bean (Phaseolus vulgaris L.) cultivars possess little or no freezing tolerance and are killed at the temperature of ice formation in their tissues. An increase in frost tolerance by 2-3 degrees C would expand dry bean production in the short growing seasons of the Canadian prairies and possibly to higher altitudes in the tropics where episodic frosts occur during the growing season.
View Article and Find Full Text PDFTwo aquaporin genes were isolated from a cDNA library of canola (Brassica napus L.). The first aquaporin, BnPIP1 of 1094 bp, encoding a putative polypeptide of 287 amino acids with a predicted molecular mass of 30.
View Article and Find Full Text PDFSuperoxide dismutase (SOD) gene expression was investigated to elucidate its role in drought and freezing tolerance in spring and winter wheat (Triticum aestivum). cDNAs encoding chloroplastic Cu/ZnSODs and mitochondrial MnSODs were isolated from wheat. MnSOD and Cu/ZnSOD genes were mapped to the long arms of the homologous group-2 and -7 chromosomes, respectively.
View Article and Find Full Text PDFThe use of heat-stable plant proteins in an ethylene glycol-based solution for the vitrification of in vitro-derived embryos was examined. Day 7, 8 and 9 bovine in vitro matured, fertilized and cultured (IVMFC), full and expanded blastocysts were vitrified in solutions composed of 40% ethylene glycol (EG) plus 0.3 M sucrose supplemented with 20% Ficoll and 0.
View Article and Find Full Text PDFThere have been very few reports on the expression of stress-responsive genes in field-grown material. A barley dehydrin cDNA was used to investigate the expression of dehydrin-like transcripts after low-temperature and abscisic acid-induced acclimation of bromegrass (Bromus inermis Leyss) suspension cells and of bromegrass and rye (Secale cereale) plants grown in the field and under controlled environmental conditions. Field-acclimated plants accumulated high levels of dehydrin transcripts and were very freezing tolerant.
View Article and Find Full Text PDFOptical isomers and racemic mixtures of abscisic acid (ABA) and the ABA metabolites abscisyl alcohol (ABA alc), abscisyl aldehyde (ABA ald), phaseic acid (PA), and 7[prime]hydroxyABA (7[prime]OHABA) were studied to determine their effects on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell-suspension cultures. A dihydroABA analog (DHABA) series that cannot be converted to PA was also investigated. Racemic ABA, (+)-ABA, ([plus or minus])-DHABA, and (+)-DHABA were the most active in inducing freezing tolerance, (-)-ABA, ([plus or minus])-7[prime]OHBA, (-)-DHABA, ([plus or minus])-ABA ald, and ([plus or minus])-ABA alc had a moderate effect, and PA was inactive.
View Article and Find Full Text PDFIncreased heat tolerance is most often associated with the synthesis of heat-shock proteins following pre-exposure to a nonlethal heat treatment. In this study, a bromegrass (Bromus inermis Leyss cv Manchar) cell suspension cultured in a medium containing 75 microM abscisic acid (ABA) without prior heat treatment had a 87% survival rate, as determined by regrowth analysis, following exposure to 42.5 degrees C for 120 min.
View Article and Find Full Text PDFThe induction of freezing tolerance in bromegrass (Bromus inermis Leyss) cell culture was used to investigate the activity of absisic acid (ABA) analogs. Analogs were either part of an array of 32 derived from systematic alterations to four regions of the ABA molecule or related, pure optical isomers. Alterations were made to the functional group at C-1 (acid replaced with methyl ester, aldehyde, or alcohol), the configuration at C-2, C-3 (cis double bond replaced with trans double bond), the bond order at C-4, C-5 (trans double bond replaced with a triple bond), and ring saturation (C-2', C-3' double bond replaced with a single bond so that the C-2' methyl and side chain were cis).
View Article and Find Full Text PDFVarious empirical prefreezing protocols have been used to facilitate cryopreservation of dormant buds from woody plants. The objective of this research was to determine the quantity of water remaining in liquid phase, under different prefreezing conditions using pulsed nuclear magnetic resonance spectroscopy of dormant apple (Malus domestica Mill.) buds from three cultivars.
View Article and Find Full Text PDFCellular and extracellular protein profiles from Bromus inermis Leyss. cv Manchar cell suspension cultures cold hardened by low temperature and abscisic acid (ABA) treatment were analyzed by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis. Cellular proteins (25, 165, 190, and 200 kilodaltons) increased by low temperature growth and cellular proteins (20, 25, 28, 30, 32, 37, 40, 45, 200 kilodaltons) increased by exogenous ABA treatment were identified.
View Article and Find Full Text PDFBromus inermis Leyss cell cultures treated with 75 micromolar abscisic acid (ABA) at both 23 and 3 degrees C developed more freezing resistance than cells cultured at 3 degrees C. Protein synthesis in cells induced to become freezing tolerant by ABA and low temperature was monitored by [(14)C]leucine incorporation. Protein synthesis continued at 3 degrees C, but net cell growth was stopped.
View Article and Find Full Text PDFA 2-gram fresh weight inoculum of bromegrass (Bromus inermis Leyss. culture BG970) cell suspension culture treated with 7.5 x 10(-5) molar abscisic acid (ABA) for 7 days at 25 degrees C survived slow cooling to -60 degrees C.
View Article and Find Full Text PDFThe freezing behavior of dimethylsulfoxide (DMSO) and sorbitol solutions and periwinkle (Catharanthus roseus) cells treated with DMSO and sorbitol alone and in combination was examined by nuclear magnetic resonance and differential thermal analysis. Incorporation of DMSO or sorbitol into the liquid growth medium had a significant effect in the temperature range for initiation to completion of ice crystallization. Compared to the control, less water crystallized at temperatures below -30 degrees C in DMSO-treated cells.
View Article and Find Full Text PDFUpon exposure to 2 degrees C, the leaves and crowns of rye (Secale cereale L. cv ;Puma') and wheat (Triticum aestivum L. cv ;Norstar' and ;Cappelle') increased in cold hardiness, whereas little change in root cold hardiness was observed.
View Article and Find Full Text PDFThe effect of abscisic acid (ABA) on the cold hardiness of cell suspension was investigated. Cell suspension cultures of winter wheat (Triticum aestivum L. cv Norstar), winter rye (Secale cereale L.
View Article and Find Full Text PDF