Publications by authors named "Gus Welzel"

Antidiabetic treatments aiming to reduce body weight are currently gaining increased interest. Exendin-4, a glucagon-like peptide-1 (GLP-1) receptor agonist administered twice daily via s.c.

View Article and Find Full Text PDF

Four different formats of bispecific antibodies (bsAbs) were generated that consist of anti-Her2 IgG or Fab site-specifically conjugated to anti-CD3 Fab using the genetically encoded noncanonical amino acid. These bsAbs varied in valency or in the presence or absence of an Fc domain. Different valencies did not significantly affect antitumor efficacy, whereas the presence of an Fc domain enhanced cytotoxic activity, but triggered antigen-independent T-cell activation.

View Article and Find Full Text PDF

Bovine antibody BLV1H12 possesses a unique "stalk-knob" architecture in its ultralong heavy chain CDR3, allowing substitutions of the "knob" domain with protein agonists to generate functional antibody chimeras. We have generated a humanized glucagon-like peptide-1 (GLP-1) receptor agonist antibody by first introducing a coiled-coil "stalk" into CDR3H of the antibody herceptin. Exendin-4 (Ex-4), a GLP-1 receptor agonist, was then fused to the engineered stalk with flexible linkers, and a Factor Xa cleavage site was inserted immediately in front of Ex-4 to allow release of the N-terminus of the fused peptide.

View Article and Find Full Text PDF

X-ray crystallographic analysis of a bovine antibody (BLV1H12) revealed a unique scaffold in its ultralong heavy chain complementarity determining region 3 (CDR3H) that folds into a solvent exposed, antiparallel β-stranded "stalk" fused with a disulfide cross-linked "knob" domain. This unusual variable region motif provides a novel approach for generating chimeric antibodies with novel activities. Toward this end, human erythropoietin (hEPO) was substituted for the "knob" domain in this antibody to afford an antibody-hEPO (Ab-hEPO) fusion protein that efficiently expresses in mammalian cells.

View Article and Find Full Text PDF

Accumulation of β-amyloid (Aβ) in the brain is believed to contribute to the pathology of Alzheimer's Disease (AD). Aβ levels are controlled by the production of Aβ from amyloid precursor protein, degradation by proteases, and peripheral clearance. In this study we sought to determine whether enhancing clearance of plasma Aβ with a peripherally administered Aβ-degrading protease would reduce brain Aβ levels through a peripheral sink.

View Article and Find Full Text PDF