Glycosaminoglycans (GAGs) play crucial roles in several biological processes including cell division, angiogenesis, anticoagulation, neurogenesis, axon guidance and growth, and viral and bacterial infections among others. The GAG cleaving hydrolases/lyases play a major role in the control of GAG structures, functions, and turn over. Dysregulation of GAG cleaving enzymes in vivo are linked to a number of human diseases including cancer, diabetes, atherosclerosis, arthritis, inflammation, and cardiovascular diseases.
View Article and Find Full Text PDFPLK1, polo-like kinase 1, is a central player regulating mitosis. Inhibition of the subcellular localization and kinase activity of PLK1 through the PBD, polo-box domain, is a viable alternative to ATP-competitive inhibitors, for which the development of resistance and inhibition of related PLK family members are concerns. We describe novel nonpeptidic PBD-binding inhibitors, termed abbapolins, identified through successful application of the REPLACE strategy and demonstrate their potent antiproliferative activity in prostate tumors and other cell lines.
View Article and Find Full Text PDFHeparin has been in clinical use as an anticoagulant for the last eight decades and used worldwide in more than 100 million medical procedures every year. This lifesaving drug is predominantly obtained from ~700 million pig intestines or bovine organs through millions of small and medium-sized slaughterhouses. However, the preparations from animal sources have raised many safety concerns, including the contamination of heparin with potential pathogens, proteins, and other impurities.
View Article and Find Full Text PDFThe amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP).
View Article and Find Full Text PDFChain elongation prenyltransferases catalyze the addition of the hydrocarbon moiety of allylic isoprenoid diphosphates to the carbon-carbon double bond in isopentenyl diphosphate (IPP) in the primary building reactions in the isoprenoid biosynthetic pathway. Bis-O-diphosphate analogues 3-OPP/OPP, 4-OPP/OPP, and 5-OPP/OPP and bis-thiolodiphosphate bisubstrate analogues 3-SPP/SPP, 4-SPP/SPP, and 5-SPP/SPP were synthesized. The analogues 4-OPP/OPP, 5-OPP/OPP, 4-SPP/SPP, and 5-SPP/SPP were excellent competitive inhibitors of avian farnesyl diphosphate synthase with KI = 1.
View Article and Find Full Text PDFSqualene (SQ) is a key intermediate in hopanoid biosynthesis. Many bacteria synthesize SQ from farnesyl diphosphate (FPP) in three steps: FPP to (1R,2R,3R)-presqualene diphosphate (PSPP), (1R,2R,3R)-PSPP to hydroxysqualene (HSQ), and HSQ to SQ. Chemical, biochemical, and spectroscopic methods were used to establish that HSQ synthase synthesizes (S)-HSQ.
View Article and Find Full Text PDFSqualene (SQ) is an intermediate in the biosynthesis of sterols in eukaryotes and a few bacteria and of hopanoids in bacteria where they promote membrane stability and the formation of lipid rafts in their hosts. The genes for hopanoid biosynthesis are typically located on clusters that consist of four highly conserved genes-, , , and -for conversion of farnesyl diphosphate (FPP) to hopene or related pentacyclic metabolites. While is known to encode a squalene cyclase, the functions for , , and are not rigorously established.
View Article and Find Full Text PDFTerpenoids are a large structurally diverse group of natural products with an array of functions in their hosts. The large amount of genomic information from recent sequencing efforts provides opportunities and challenges for the functional assignment of terpene synthases that construct the carbon skeletons of these compounds. Inferring function from the sequence and/or structure of these enzymes is not trivial because of the large number of possible reaction channels and products.
View Article and Find Full Text PDFFarnesyl diphosphate synthase catalyzes the sequential chain elongation reactions between isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) to form geranyl diphosphate (GPP) and between IPP and GPP to give farnesyl diphosphate (FPP). Bisubstrate analogues containing the allylic and homoallylic substrates were synthesized by joining fragments for IPP and the allylic diphosphates with a C-C bond between the methyl group at C3 in IPP and the Z-methyl group at C3 in DMAPP (3-OPP) and GPP (4-OPP), respectively. These constructs placed substantial limits on the conformational space available to the analogues relative to the two substrates.
View Article and Find Full Text PDFLong-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover.
View Article and Find Full Text PDFThe number of available protein sequences has increased exponentially with the advent of high-throughput genomic sequencing, creating a significant challenge for functional annotation. Here, we describe a large-scale study on assigning function to unknown members of the trans-polyprenyl transferase (E-PTS) subgroup in the isoprenoid synthase superfamily, which provides substrates for the biosynthesis of the more than 55,000 isoprenoid metabolites. Although the mechanism for determining the product chain length for these enzymes is known, there is no simple relationship between function and primary sequence, so that assigning function is challenging.
View Article and Find Full Text PDFAll 4 diastereomeric possibilities for the 2,3-dihydroxy-2,6,8-trimethyldeca-(4,6)-dienoic acid (Dhtda) residue, found in the cyclic depsipeptide natural products papuamides A-D and mirabamides A-D, were stereoselectively synthesized using a -selective Wittig reaction of both enantiomers of 2,4-dimethylhex-2-enyl-triphenylphosphonium bromide with all four diastereoisomers of ethyl-3-formyl-2-methyl-1,4-dioxaspiro[4,4]nonane-2-carboxylate. To elucidate the configuration of Dhtda, the H- and C-NMR spectra of the synthetic isomers were compared to those of the natural residue. On the basis of that comparison, it is suggested that the likely configuration of the diastereomer present in Dhtda residue is either (2,3,8) or (2,3,8) in the papuamides and mirabimides.
View Article and Find Full Text PDF