Human CtIP maintains genomic integrity primarily by promoting 5' DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase.
View Article and Find Full Text PDFDNA double-strand breaks (DSBs) are one of the most lethal types of DNA damage due to the fact that unrepaired or mis-repaired DSBs lead to genomic instability or chromosomal aberrations, thereby causing cell death or tumorigenesis. The classical non-homologous end-joining pathway (c-NHEJ) is the major repair mechanism for rejoining DSBs, and the catalytic subunit of DNA-dependent protein kinase (DNA-PK) is a critical factor in this pathway; however, regulation of DNA-PK expression remains unknown. In this study, we demonstrate that miR-145 directly suppresses DNA-PK by binding to the 3'-UTR and inhibiting translation, thereby causing an accumulation of DNA damage, impairing c-NHEJ, and rendering cells hypersensitive to ionizing radiation (IR).
View Article and Find Full Text PDFThe Hsp70-binding protein 1 (HspBP1) belongs to a family of co-chaperones that regulate Hsp70 activity and whose biological significance is not well understood. In the present study, we show that when HspBP1 is either knocked down or overexpressed in BRCA1-proficient breast cancer cells, there were profound changes in tumorigenesis, including anchorage-independent cell growth in vitro and in tumor formation in xenograft models. However, HspBP1 did not affect tumorigenic properties in BRCA1-deficient breast cancer cells.
View Article and Find Full Text PDFHomologous recombination (HR) is critical for error-free repair of DNA double-strand breaks. Chromatin loading of RAD51, a key protein that mediates the recombination, is a crucial step in the execution of the HR repair. Here, we present evidence that SUMOylation of RAD51 is crucial for the RAD51 recruitment to chromatin and HR repair.
View Article and Find Full Text PDFMediator of DNA damage checkpoint protein 1 (MDC1) plays a vital role in DNA damage response (DDR) by coordinating the repair of double strand breaks (DSBs). Here, we identified a novel interaction between MDC1 and karyopherin α-2 (KPNA2), a nucleocytoplasmic transport adaptor, and showed that KPNA2 is necessary for MDC1 nuclear import. Thereafter, we identified a functional nuclear localization signal (NLS) between amino acid residues 1989-1994 of the two Breast Cancer 1 (BRCA1) carboxyl-terminal (tBRCT) domain of MDC1 and demonstrated disruption of this NLS impaired interaction between MDC1 and KPNA2 and reduced nuclear localization of MDC1.
View Article and Find Full Text PDFMDC1 plays a critical role in the DNA damage response (DDR) by interacting directly with several factors including γ-H2AX. However, the mechanism by which MDC1 is recruited to damaged sites remains elusive. Here, we show that MDC1 interacts with a helix-loop-helix (HLH)-containing protein called inhibitor of DNA-binding 3 (ID3).
View Article and Find Full Text PDFTerminally differentiated cells have a reduced capacity to repair double-stranded breaks (DSB) in DNA, however, the underlying molecular mechanism remains unclear. Here, we show that miR-22 is upregulated during postmitotic differentiation of human breast MCF-7 cells, hematopoietic HL60 and K562 cells. Increased expression of miR-22 in differentiated cells was associated with decreased expression of MDC1, a protein that plays a key role in the response to DSBs.
View Article and Find Full Text PDF