Continuous-flow ventricular assist devices (CFVAD) and counterpulsation devices (CPD) are used to treat heart failure (HF). CFVAD can diminish pulsatility, but pulsatile modes have been implemented to increase vascular pulsatility. The effects of CFVAD in a pulsatile mode and CPD support on the function of endothelial cells (ECs) are yet to be investigated.
View Article and Find Full Text PDFTesting drugs in vivo and in vitro have been essential elements for the discovery of new therapeutics. Due to the recent advances in in vitro cell culture models, such as human-induced pluripotent stem cell-derived cardiomyocytes and 3D multicell type organoid culture methods, the detection of adverse cardiac events prior to human clinical trials has improved. However, there are still numerous therapeutics whose adverse cardiac effects are not detected until human trials due to the inability of these cell cultures to fully model the complex multicellular organization of an intact human myocardium.
View Article and Find Full Text PDFContinuous flow (CF) left ventricular assist devices (LVAD) operate at a constant speed mode, which could result in increased risk of adverse events due to reduced vascular pulsatility. Consequently, pump speed modulation algorithms have been proposed to augment vascular pulsatility. However, the quantitative local hemodynamic effects on the aorta when the pump is operating with speed modulation using different types of CF-LVADs are still under investigation.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is characterized as a neurodevelopmental disorder with a heterogeneous nature, influenced by genetics and exhibiting diverse clinical presentations. In this study, we dissect Autism Spectrum Disorder (ASD) into its behavioral components, mirroring the diagnostic process used in clinical settings. Morphological features are extracted from magnetic resonance imaging (MRI) scans, found in the publicly available dataset ABIDE II, identifying the most discriminative features that differentiate ASD within various behavioral domains.
View Article and Find Full Text PDFPatients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics.
View Article and Find Full Text PDFNonsurgical bleeding occurs in a significant proportion of patients implanted with continuous-flow ventricular assist devices (CF-VADs) and is associated with nonphysiologic flow with diminished pulsatility. An in vitro vascular pulse perfusion model seeded with adult human aortic endothelial cells (HAECs) was used to identify biomarkers sensitive to changes in pulsatility. Diminished pulsatility resulted in an ~45% decrease in von Willebrand factor (vWF) levels from 9.
View Article and Find Full Text PDFContinuous flow rotary blood pumps (RBP) operating clinically at constant rotational speeds cannot match cardiac demand during varying physical activities, are susceptible to suction, diminish vascular pulsatility, and have an increased risk of adverse events. A sensorless, physiologic feedback control strategy for RBP was developed to mitigate these limitations. The proposed algorithm used intrinsic pump speed to obtain differential pump speed (Δ).
View Article and Find Full Text PDFPatients with single ventricle defects undergoing the Fontan procedure eventually face Fontan failure. Long-term cavopulmonary assist devices using rotary pump technologies are currently being developed as a subpulmonary power source to prevent and treat Fontan failure. Low hydraulic resistance is a critical safety requirement in the event of pump failure (0 RPM) as a modest 2 mmHg cavopulmonary pressure drop can compromise patient hemodynamics.
View Article and Find Full Text PDFBackground: Patients on continuous flow ventricular assist devices (CF-VADs) are at high risk for the development of Acquired von-Willebrand Syndrome (AVWS) and non-surgical bleeding. von Willebrand Factor (vWF) plays an essential role in maintaining hemostasis via platelet binding to the damaged endothelium to facilitate coagulation. In CF-VAD patients, degradation of vWF into low MW multimers that are inefficient in facilitating coagulation occurs and has been primarily attributed to the supraphysiological shear stress associated with the CF-VAD impeller.
View Article and Find Full Text PDFSensors used to diagnose, monitor or treat diseases in the medical domain are known as medical sensors [...
View Article and Find Full Text PDFBladder cancer (BC) is the 10th most common cancer globally and has a high mortality rate if not detected early and treated promptly. Non-muscle-invasive BC (NMIBC) is a subclassification of BC associated with high rates of recurrence and progression. Current tools for predicting recurrence and progression on NMIBC use scoring systems based on clinical and histopathological markers.
View Article and Find Full Text PDFThere is need for a reliable in vitro system that can accurately replicate the cardiac physiological environment for drug testing. The limited availability of human heart tissue culture systems has led to inaccurate interpretations of cardiac-related drug effects. Here, we developed a cardiac tissue culture model (CTCM) that can electro-mechanically stimulate heart slices with physiological stretches in systole and diastole during the cardiac cycle.
View Article and Find Full Text PDFBackground: Patients with continuous flow ventricular assist devices (CF-VADs) are at high risk for non-surgical bleeding, speculated to associate with the loss of pulsatility following CF-VAD placement. It has been hypothesized that continuous shear stress causes elongation and increased enzymatic degradation of von Willebrand Factor (vWF), a key player in thrombus formation at sites of vascular damage. However, the role of loss of pulsatility on the unravelling behavior of vWF has not been widely explored.
View Article and Find Full Text PDFRotary left ventricular assist devices (LVAD) have emerged as a long-term treatment option for patients with advanced heart failure. LVADs need to maintain sufficient physiological perfusion while avoiding left ventricular myocardial damage due to suction at the LVAD inlet. To achieve these objectives, a control algorithm that utilizes a calculated suction index from measured pump flow (SIMPF) is proposed.
View Article and Find Full Text PDFPatients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support.
View Article and Find Full Text PDFLiver cancer is a major cause of morbidity and mortality in the world. The primary goals of this manuscript are the identification of novel imaging markers (morphological, functional, and anatomical/textural), and development of a computer-aided diagnostic (CAD) system to accurately detect and grade liver tumors non-invasively. A total of 95 patients with liver tumors (M = 65, F = 30, age range = 34-82 years) were enrolled in the study after consents were obtained.
View Article and Find Full Text PDFIn the US, the most significant morbidity and mortality associated with non-valvular atrial fibrillation (NVAF) is embolic stroke, with 90% of thrombus originating from the left atrial appendage (LAA). Anticoagulation is the preferred treatment for the prevention of stroke in NVAF patients, but clinical studies have demonstrated high levels of non-compliance and increased risk of bleeding or ineligibility for anticoagulation therapy, especially in the elderly population where the incidence of NVAF is highest. Alternatively, stroke may be preventing using clinically approved surgical and catheter-based devices to exclude or occlude the LAA, but these devices continue to be plagued by peri-device leaks and thrombus formation because of residual volume.
View Article and Find Full Text PDFThe primary goal of this manuscript is to develop a computer assisted diagnostic (CAD) system to assess pulmonary function and risk of mortality in patients with coronavirus disease 2019 (COVID-19). The CAD system processes chest X-ray data and provides accurate, objective imaging markers to assist in the determination of patients with a higher risk of death and thus are more likely to require mechanical ventilation and/or more intensive clinical care.To obtain an accurate stochastic model that has the ability to detect the severity of lung infection, we develop a second-order Markov-Gibbs random field (MGRF) invariant under rigid transformation (translation or rotation of the image) as well as scale (i.
View Article and Find Full Text PDFCardiopulmonary bypass (CPB) results in short-term (3-5 h) exposure to flow with diminished pulsatility often referred to as "continuous flow". It is unclear if short-term exposure to continuous flow influences endothelial function, particularly, changes in levels of pro-inflammatory and pro-angiogenic cytokines. In this study, we used the endothelial cell culture model (ECCM) to evaluate if short-term (≤5 h) reduction in pulsatility alters levels of pro-inflammatory/pro-angiogenic cytokine levels.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
December 2019
Objective: Fontan circulatory inefficiency can be addressed by replacing the missing subpulmonary power source to reverse the Fontan paradox. An implantable cavopulmonary assist device is described that will simultaneously reduce systemic venous pressure and increase pulmonary arterial pressure, improving preload and cardiac output, in a univentricular Fontan circulation on a long-term basis.
Methods: A rotary blood pump that was based on the von Karman viscous pump was designed for implantation into the total cavopulmonary connection (TCPC).
Background: Continuous-flow ventricular assist devices (CF-VADs) produce non-physiologic flow with diminished pulsatility, which is a major risk factor for development of adverse events, including gastrointestinal (GI) bleeding and arteriovenous malformations (AVMs). Introduction of artificial pulsatility by modulating CF-VAD flow has been suggested as a potential solution. However, the levels of pulsatility and frequency of CF-VAD modulation necessary to prevent adverse events are currently unknown and need to be evaluated.
View Article and Find Full Text PDFModulation of pump speed has been proposed and implemented clinically to improve vascular pulsatility in continuous flow ventricular assist device patient. The flow dynamics of the HVAD with a promising asynchronous pump speed modulation and its potential risk for device-induced blood trauma was investigated numerically. The boundary conditions at the pump inlet and outlet were defined using the pressure waveforms adapted from the experimentally recorded ventricular and arterial pressure waveforms in a large animal ischemic heart failure (IHF) model supported by the HVAD operated at constant and modulated pump speeds.
View Article and Find Full Text PDF