1,3-Butadiene (BD) is a known human carcinogen used in the synthetic polymer industry and also found in cigarette smoke, automobile exhaust and wood burning smoke. BD is metabolically activated by cytochrome P450 monooxygenases (CYP) 2E1 and 2A6 to 3,4-epoxy-1-butene (EB), which can be detoxified by GST-catalyzed glutathione conjugation or hydrolysis. We have previously observed ethnic differences in urinary levels of EB-mercapturic acids in white, Japanese American and Native Hawaiian smokers.
View Article and Find Full Text PDFChem Res Toxicol
January 2021
Ozone is a major component of air pollution and carries potentially mutagenic and harmful affects to health. The oxidation of isolated calf thymus DNA (CT-DNA) led to the nearly quantitative loss of normal DNA 2'-deoxyribonucleosides in the following order: T > G > C ≫ A. The major modification of pyrimidines (T, C, and 5-methylcytosine (5mC)) was the corresponding 5-hydroxyhydantoin derivative after complete digestion of DNA to its component 2'-deoxyribonucleosides.
View Article and Find Full Text PDF1,3-Butadiene (BD) is a known human carcinogen found in cigarette smoke, automobile exhaust, and urban air. Workers occupationally exposed to BD in the workplace have an increased incidence of leukemia and lymphoma. BD undergoes cytochrome P450-mediated metabolic activation to 3,4-epoxy-1-butene (EB), 1,2,3,4-diepoxybutane (DEB) and 1,2-dihydroxy-3,4-epoxybutane (EBD), which form covalent adducts with DNA.
View Article and Find Full Text PDFApplications based on near-infrared femtosecond laser-induced plasma in biological materials involve numerous ionization events that inevitably mediate physicochemical effects. Here, the physical chemistry underlying the action of such plasma is characterized in a system of biological interest. We have implemented wavefront shaping techniques to control the generation of laser-induced low electron density plasma channels in DNA aqueous solutions, which minimize the unwanted thermo-mechanical effects associated with plasma of higher density.
View Article and Find Full Text PDFThe methylation and oxidative demethylation of cytosine in CpG dinucleotides plays a critical role in the regulation of genes during cell differentiation, embryogenesis and carcinogenesis. Despite its low abundance, 5-methylcytosine (5mC) is a hotspot for mutations in mammalian cells. Here, we measured five oxidation products of 5mC together with the analogous products of cytosine and thymine in DNA exposed to ionizing radiation in oxygenated aqueous solution.
View Article and Find Full Text PDFA novel technique has been employed to investigate the simultaneous damage to DNA components induced by soft X rays (1.5 keV) and low-energy electrons (0-30 eV) in thin films of thymidine deposited on glass and tantalum substrates and irradiated under atmospheric pressure and temperature. The films were surrounded by either an N2 or O2 environment.
View Article and Find Full Text PDFThe genotoxic effects of high-energy ionizing radiation have been largely attributed to the ionization of H2O leading to hydroxyl radicals and the ionization of DNA leading mostly to damage through base radical cations. However, the contribution of low-energy electrons (LEEs; ≤ 10 eV), which involves subionization events, has been considered to be less important than that of hydroxyl radicals and base radical cations. Here, we compare the ability of LEEs and high-energy X-ray photons to induce DNA damage using dried thin films of TpTpT trinucleotide as a simple and representative model for DNA damage.
View Article and Find Full Text PDFThe one-electron oxidation of cellular DNA in cultured human HeLa cells initiated by intense nanosecond 266 nm laser pulse irradiation produces cross-links between guanine and thymine bases (G*-T*), characterized by a covalent bond between C8 guanine (G*) and N3 thymine (T*) atoms. The DNA lesions were quantified by isotope dilution LC-MS/MS methods in the multiple reaction-monitoring mode using isotopically labeled [(15)N, (13)C]-nucleotides as internal standards. Among several known pyrimidine and 8-oxo-7,8-dihydroguanine lesions, the G*-T* cross-linked lesions were detected at levels of ~0.
View Article and Find Full Text PDFWe have identified a series of modifications of the 2'-deoxyribose moiety of DNA arising from the exposure of isolated and cellular DNA to ionizing radiation. The modifications consist of 2',3'-dideoxyribonucleoside derivatives of T, C, A, and G, as identified by enzymatic digestion and LC-MS/MS. Under dry conditions, the yield of these products was 6- to 44-fold lower than the yield of 8-oxo-7,8-dihydroguanine.
View Article and Find Full Text PDFSpontaneous and oxidant-induced damage to cytosine is probably the main cause of CG to TA transition mutations in mammalian genomes. The reaction of hydroxyl radical (·OH) and one-electron oxidants with cytosine derivatives produces numerous oxidation products, which have been identified in large part by model studies with monomers and short oligonucleotides. Here, we developed an analytical method based on LC-MS/MS to detect 10 oxidized bases in DNA, including 5 oxidation products of cytosine.
View Article and Find Full Text PDF