It is challenging to determine the in vivo material properties of a very soft, mesoscale arterial vesselsof size ∼ 80 to 120 μm diameter. This information is essential to understand the early embryonic cardiovascular development featuring rapidly evolving dynamic microstructure. Previous research efforts to describe the properties of the embryonic great vessels are very limited.
View Article and Find Full Text PDFRecent progress in vascular growth mechanics has involved the use of computational algorithms to address clinical problems with the use of three-dimensional patient specific geometries. The objective of this study is to establish a predictive computational model for the volumetric growth of pulmonary arterial (PA) tissue following complex cardiovascular patch reconstructive surgeries for congenital heart disease patients. For the first time in the literature, the growth mechanics and performance of artificial cardiovascular patches in contact with the growing PA tissue domain is established.
View Article and Find Full Text PDFThe microstructure for mature vessels has been investigated in detail, while there is limited information about the embryonic stages, in spite of their importance in the prognosis of congenital heart defects. It is hypothesized that the embryonic vasculature represents a disorganized but dynamic soft tissue, which rapidly evolves toward a specialized multi-cellular vascular structure under mechanical loading. Here the microstructural evolution process of the embryonic pharyngeal aortic arch structure was simulated using an in ovo validated long-term growth and remodeling computational model, implemented as an in-house FEBio plug-in.
View Article and Find Full Text PDFIn this work, we constructed a novel collagen fibre remodelling algorithm that incorporates the complex nature of random evolution acting on single fibres causing macroscopic fibre dispersion. The proposed framework is different from the existing remodelling algorithms, in that the microscopic random force on cellular scales causing a rotational-type Brownian motion alone is considered as an aspect of vascular tissue remodelling. A continuum mechanical framework for the evolution of local dispersion and how it could be used for modeling the evolution of internal radius of biaxially strained artery structures under constant internal blood pressure are presented.
View Article and Find Full Text PDF