The stereoselective formation of 1,2- glycosidic linkages is challenging. The currently most widely used strategy for their installation uses 4,6--benzylidene-protected building blocks. The stereoselectivity of this reaction is thought to be driven by a covalent intermediate, which reacts via an S2 mechanism.
View Article and Find Full Text PDFElectrospray ionization (ESI) is among the commonly used atmospheric pressure ionization techniques in mass spectrometry (MS). One of the drawbacks of ESI is the formation of divergent plumes composed of polydisperse microdroplets, which lead to low transmission efficiency. Here, we propose a new method to potentially improve the transmission efficiency of ESI, which does not require additional electrical components and complex interface modification.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
February 2024
Previous mechanistic descriptions of electrosprays mostly focused on the dynamics of Taylor cones, initial droplets, and progeny droplets. However, vapor formation during droplet desolvation in an electrospray plume has not been discussed to a great extent. Here, we implement a double-pass on-axis schlieren high-speed imaging system to observe generation and propagation of vapors in an offline electrospray source under different conditions.
View Article and Find Full Text PDFElectrospray ionization (ESI) is one of the main techniques used in mass spectrometry (MS) of nonvolatile compounds. ESI is a disordered process, in which a large number of polydisperse droplets are projected from a fluctuating Taylor cone and jet protruding ESI emitter. Here, we disclose a system for sectioning electrospray plumes to discrete packets with millisecond and submillisecond lifetime, which are introduced to the MS orifice, one at a time.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
October 2023
Studies of protein folding often involve offline experimental methods such as titrating protein samples with denaturants or equilibrating them in the presence of denaturants. Here, we demonstrate an online analytical approach in which the protein structure is perturbed by a pH ramp evoked by immobilized lipase-catalyzed ester hydrolysis. Changes in the tertiary structure of the protein in response to a pH ramp (from approximately 6.
View Article and Find Full Text PDFSkin metabolites show huge potential for use in clinical diagnostics. However, skin sampling and analysis workflows are tedious and time-consuming. Here, we demonstrate a vending-machine-style skin excretion sensing platform based on hydrogel-assisted sampling of skin metabolites.
View Article and Find Full Text PDFOne of the main factors affecting protein structure in solution is pH. Traditionally, to study pH-dependent conformational changes in proteins, the concentration of the H ions is adjusted manually, complicating real-time analyses, hampering dynamic pH regulation, and consequently leading to a limited number of tested pH levels. Here, we present a programmable device, a scanning pH-meter, that can automatically generate different types of pH ramps and waveforms in a solution.
View Article and Find Full Text PDFElectrospray ionization (ESI) mass spectrometry (MS) is one of the key techniques used in biomolecular analysis nowadays. It relies on formation of polydisperse microdroplets, which undergo desolvation and liberate ions to the gas phase. Here we demonstrate low-frequency-sound-modulated ESI for analysis of biomolecules.
View Article and Find Full Text PDFFizzy extraction (FE) is a technique that utilizes effervescence phenomenon to extract volatile organic compounds (VOCs) from liquid matrices for subsequent analysis. To induce effervescence, a liquid sample is first pressurized (at ∼ 150 kPa) with an extractant gas (here, nitrogen), and then rapidly depressurized. In this work, we combine an in-house-built FE system with a commercial ion-mobility spectrometry (IMS) module in order to develop a portable analytical platform for in-situ analysis of VOCs in liquid samples.
View Article and Find Full Text PDFSweat analysis provides an alternative and noninvasive way of clinical diagnostics. However, sampling and transferring sweat-derived samples to analytical instruments is challenging. In this report, we demonstrate a method utilizing a flat disc-shaped sampling probe, and a compatible re-extraction apparatus coupled online with extractive electrospray ionization (EESI) mass spectrometry (MS).
View Article and Find Full Text PDFWe present BioChemPen, a portable wireless biosensor device for rapid analysis of substances adsorbed on solid surfaces. The device takes advantage of (bio)luminescent reactions taking place in a hydrogel matrix. In a typical embodiment, the active element of this device is a hydrogel disk (chemotransducer) containing enzyme(s), electrolyte solution, and all of the necessary substrates.
View Article and Find Full Text PDFSparging-based methods have long been used to liberate volatile organic compounds (VOCs) from liquid sample matrices prior to analysis. In these methods, a carrier gas is delivered from an external source. Here, we demonstrate "catalytic oxygenation-mediated extraction" (COME), which relies on biocatalytic production of oxygen occurring directly in the sample matrix.
View Article and Find Full Text PDFSample flow rate is one of the parameters that influence the sensitivity of electrospray ionization (ESI) mass spectrometry. By varying the sample flow rate, initial droplets of different sizes can be generated. Protein molecules in small droplets may form gas-phase ions earlier than the ones in large droplets.
View Article and Find Full Text PDFWith the rapid development of high technology, chemical science is not as it used to be a century ago. Many chemists acquire and utilize skills that are well beyond the traditional definition of chemistry. The digital age has transformed chemistry laboratories.
View Article and Find Full Text PDFSince the advent of modern science, researchers have had to rely on their technical skills or the support of specialized workshops to construct analytical instruments. The notion of the 'fourth industrial revolution' promotes construction of customized systems by individuals using widely available, inexpensive electronic modules. This protocol shows how chemists and biochemists can utilize a broad range of microcontroller boards (MCBs) and single-board computers (SBCs) to improve experimental designs and address scientific questions.
View Article and Find Full Text PDFThe developments in mass spectrometry (MS) in the past few decades reveal the power and versatility of this technology. MS methods are utilized in routine analyses as well as research activities involving a broad range of analytes (elements and molecules) and countless matrices. However, manual MS analysis is gradually becoming a thing of the past.
View Article and Find Full Text PDFWe demonstrate an analytical approach to monitor the effect of pH on protein tertiary structure. An autocatalytic enzyme reaction is used to stimulate refolding of proteins during real-time analysis. The method takes advantage of a nonlinear pH ramp generated by the urea-urease clock reaction.
View Article and Find Full Text PDFMost analytical methods are based on "analogue" inputs from sensors of light, electric potentials, or currents. The signals obtained by such sensors are processed using certain calibration functions to determine concentrations of the target analytes. The signal readouts are normally done after an optimised and fixed time period, during which an assay mixture is incubated.
View Article and Find Full Text PDFGasometric assays involve measurements of the amounts of gases that are released during physical or chemical processes. The available instrumentation for gasometric analysis is generally difficult to use and requires large sample volumes. In some cases, toxic materials (mercury) are involved in the analysis process.
View Article and Find Full Text PDF