Publications by authors named "Gurinov A"

While plastics-to-plastics recycling melting and re-extrusion is often the preferred option due to a relatively low CO footprint, this technique requires a highly sorted waste stream and plastic properties can often not be maintained. Obtaining aromatics, such as benzene, toluene, and xylene (BTX), catalytic pyrolysis of polyolefins, such as polypropylene and polyethylene, offers another attractive recycling technology. In this process, a discarded crude oil refinery catalyst (ECAT) was previously shown to lower the unwanted formation of deactivating coke species compared to a fresh crude oil refinery catalyst (FCC-cat), while yielding 20 wt% aromatics from polypropylene.

View Article and Find Full Text PDF

Studying the structural aspects of proteins within sub-cellular compartments is of growing interest. Dynamic nuclear polarization supported solid-state NMR (DNP-ssNMR) is uniquely suited to provide such information, but critically lacks the desired sensitivity and resolution. Here we utilize SNAPol-1, a novel biradical, to conduct DNP-ssNMR at high-magnetic fields (800 MHz/527 GHz) inside HeLa cells and isolated cell nuclei electroporated with [C,N] labeled ubiquitin.

View Article and Find Full Text PDF

Cellular dynamic nuclear polarization (DNP) has been an effective means of overcoming the intrinsic sensitivity limitations of solid-state nuclear magnetic resonance (ssNMR) spectroscopy, thus enabling atomic-level biomolecular characterization in native environments. Achieving DNP signal enhancement relies on doping biological preparations with biradical polarizing agents (PAs). Unfortunately, PA performance within cells is often limited by their sensitivity to the reductive nature of the cellular lumen.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity.

View Article and Find Full Text PDF

Herein, we investigate a novel set of polarizing agents-mixed-valence compounds-by theoretical and experimental methods and demonstrate their performance in high-field dynamic nuclear polarization (DNP) NMR experiments in the solid state. Mixed-valence compounds constitute a group of molecules in which molecular mobility persists even in solids. Consequently, such polarizing agents can be used to perform Overhauser-DNP experiments in the solid state, with favorable conditions for dynamic nuclear polarization formation at ultra-high magnetic fields.

View Article and Find Full Text PDF

Vast areas of Europe were contaminated by the fallout of Cs and other radionuclides, as a result of the Chernobyl accident in 1986. The post-fallout redistribution of Chernobyl-derived Cs was associated with erosion and sediment transport processes within the fluvial system. Bottom sediments from lakes and reservoirs can provide a valuable source of information regarding the post-fallout redistribution and fate of Cs released by the Chernobyl accident.

View Article and Find Full Text PDF

Curcumin-loaded polymeric micelles composed of poly(ethylene glycol)--poly(-2-benzoyloxypropyl methacrylamide) (mPEG--p(HPMA-Bz)) were prepared to solubilize and improve the pharmacokinetics of curcumin. Curcumin-loaded micelles were prepared by a nanoprecipitation method using mPEG--p(HPMA-Bz) copolymers with varying molecular weight of the hydrophobic block (5.2, 10.

View Article and Find Full Text PDF

"CO-free" carbonylation reactions, where synthesis gas (CO/H ) is substituted by C1 surrogate molecules like formaldehyde or formic acid, have received widespread attention in homogeneous catalysis lately. Although a broad range of organics is available via this method, still relatively little is known about the precise reaction mechanism. In this work, we used in situ nuclear magnetic resonance (NMR) spectroscopy to unravel the mechanism of the alkoxycarbonylation of alkenes using different surrogate molecules.

View Article and Find Full Text PDF

After a prolonged effort over two decades, the reaction mechanism of the zeolite-catalyzed methanol-to-hydrocarbon (MTH) process is now well-understood: the so-called 'direct mechanism' ( direct coupling of two methanol molecules) is responsible for the formation of the initial carbon-carbon bonds, while the hydrocarbon pool (HCP)-based dual cycle mechanism is responsible for the formation of reaction products. While most of the reaction events occur at zeolite Brønsted acid sites, the addition of Lewis acid sites (, the introduction of alkaline earth cations like calcium) has been shown to inhibit the formation of deactivating coke species and hence increase the catalyst lifetime. With the aim to have an in-depth mechanistic understanding, herein, we employ magic angle spinning surface-enhanced dynamic nuclear polarization solid-state NMR spectroscopy to illustrate that the inclusion of Lewis acidity prevents the formation of carbene/ylide species on the zeolite, directly affecting the equilibrium between arene and olefin cycles of the HCP mechanism and hence regulating the ultimate product selectivity and catalyst lifetime.

View Article and Find Full Text PDF

Identification of surfaces at the molecular level has benefited from progress in dynamic nuclear polarization surface enhanced NMR spectroscopy (DNP SENS). However, the technique is limited when using highly sensitive heterogeneous catalysts due to secondary reaction of surface organometallic fragments (SOMFs) with stable radical polarization agents. Here, we observe that in non-porous silica nanoparticles (NPs) ( = 15 nm) some DNP enhanced NMR or SENS characterizations are possible, depending on the metal-loading of the SOMF and the type of SOMF substituents (methyl, isobutyl, neopentyl).

View Article and Find Full Text PDF

Immobilization of the 2 generation Hoveyda-Grubbs catalyst onto well-ordered 2D hexagonal (SBA15) and 3D fibrous (KCC-1) mesostructured silica, which contained tetra-coordinated Al, has been investigated through the Surface Organometallic Chemistry (SOMC) methodology. The main interest of this study lies in the peculiarity of the silica supports, which display a well-defined tetrahedral aluminum hydride site displaying a strong Lewis acid character, [([triple bond, length half m-dash]Si-O-Si[triple bond, length half m-dash])([triple bond, length half m-dash]Si-O-)Al-H]. The resulting supported Hoveyda-Grubbs catalysts have been fully characterized by advanced solid state characterization techniques (FT-IR, H and C solid state NMR, DNP-SENS, EF-TEM…).

View Article and Find Full Text PDF

Hydrogen bond geometries in the proton-bound homodimers of quinoline and acridine derivatives in an aprotic polar solution have been experimentally studied using H NMR at 120 K. The reported results show that an increase of the dielectric permittivity of the medium results in contraction of the N···N distance. The degree of contraction depends on the homodimer's size and its substituent-specific solvation features.

View Article and Find Full Text PDF

Air-stable catalysts consisting of tantalum nitride nanoparticles represented as a mixture of Ta N and TaO N with diameters in the range of 0.5 to 3 nm supported on highly dehydroxylated silica were synthesized from TaMe (Me = methyl) and dimeric Ta(OMe) with guidance by the principles of surface organometallic chemistry (SOMC). Characterization of the supported precursors and the supported nanoparticles formed from them was carried out by IR, NMR, UV-Vis, extended X-ray absorption fine structure, and X-ray photoelectron spectroscopies complemented with XRD and high-resolution TEM, with dynamic nuclear polarization surface enhanced NMR spectroscopy being especially helpful by providing enhanced intensities of the signals of H, C, Si, and N at their natural abundances.

View Article and Find Full Text PDF

Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by C and Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes.

View Article and Find Full Text PDF

Dynamic Nuclear Polarization Surface Enhanced NMR Spectroscopy (DNP SENS) is an emerging technique that allows access to high-sensitivity NMR spectra from surfaces. However, DNP SENS usually requires the use of radicals as an exogenous source of polarization, which has so far limited applications for organometallic surface species to those that do not react with the radicals. Here we show that reactive surface species can be studied if they are immobilized inside porous materials with suitably small windows, and if bulky nitroxide bi-radicals (here TEKPol) are used as the polarization source and which cannot enter the pores.

View Article and Find Full Text PDF

The design of novel heterogeneous catalysts with multiple adjacent functionalities is of high interest to heterogeneous catalysis. Herein, we report a method to obtain a majority of bifunctional acid-base pairs on SBA15. Aniline reacts with SBA15 by opening siloxane bridges leading to -phenylsilanamine-silanol pairs.

View Article and Find Full Text PDF

Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta-phenylene bridges, and we conducted a comparative structure-property relationship investigation with para-phenylene-bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials.

View Article and Find Full Text PDF

The Group 18 elements (noble gases) were the last ones in the periodic system to have not been encountered in perovskite structures. We herein report the synthesis of a new group of double perovskites KM(XeNaO6) (M = Ca, Sr, Ba) containing framework-forming xenon. The structures of the new compounds, like other double perovskites, are built up of the alternating sequence of corner-sharing (XeO6) and (NaO6) octahedra arranged in a three-dimensional rocksalt order.

View Article and Find Full Text PDF

We describe biodegradable bridged silsesquioxane (BS) composite nanomaterials with an unusually high organic content (ca. 50%) based on oxamide components mimicking amino acid biocleavable groups. Unlike most bulk BS materials, the design of sub-200 nm nearly monodisperse nanoparticles (NPs) was achieved.

View Article and Find Full Text PDF

The development of probes for biomedical applications demands materials with low toxicity levels besides fluorescence or magnetic properties to be detected by confocal microscopes or MRI resonators. Several drug delivery systems or other biomedical materials prepared with hydroxyapatite have been proposed, however, toxicity effects might arise when the size of particles is nanometric. In this study, hydroxyapatite functionalized with glucuronic or folic acids presented lower oxidative stress, measured from lipoperoxides and nitric oxide indicators in rats than pure hydroxyapatite.

View Article and Find Full Text PDF

Hydrogen bond geometries in the proton-bound homodimers of ortho-unsubstituted and ortho-methylsubstituted pyridine derivatives in aprotic polar solution were estimated using experimental NMR data. Within the series of homodimers studied the hydrogen bond lengths depend on the proton affinity of pyridines and--at least for the ortho-methylsubstituted pyridines--on the pKa of the conjugate acids in an approximately quadratic manner. The shortest possible hydrogen bond in the homodimers of ortho-unsubstituted pyridines is characterized by the N···N distance of 2.

View Article and Find Full Text PDF

(1)H and variable-temperature (15)N NMR techniques have been used to study the effect of the gradual alumination of SBA-15 on the structure and adsorption properties of this mesoporous material. The interpretation of experimental spectra suggests that aluminum chlorhydrol most effectively reacts with silica surfaces in the confinement of the cavities of rough mesopore walls, instead of forming a homogeneous aluminum film. This first leads to a gradual filling of the cavities and finally results in aluminum islands on the inner surfaces of mesopores.

View Article and Find Full Text PDF

In 1906, the preparation of “molybdic acid hydrate” was published by Arthur Rosenheim. Over the past 40 years, a multitude of isostructural compounds, which exist within a wide phase range of the system MoO3−NH3−H2O, have been published. The reported molecular formulas of “hexagonal molybdenum oxide” varied from MoO3 to MoO3·0.

View Article and Find Full Text PDF