During cytokinesis, the intercellular bridge (ICB) connecting the daughter cells experiences pulling forces, which delay abscission by preventing the assembly of the ESCRT scission machinery. Abscission is thus triggered by tension release, but how ICB tension is controlled is unknown. Here, we report that caveolae, which are known to regulate membrane tension upon mechanical stress in interphase cells, are located at the midbody, at the abscission site, and at the ICB/cell interface in dividing cells.
View Article and Find Full Text PDFThe midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis. Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo. Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.
View Article and Find Full Text PDFCytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle.
View Article and Find Full Text PDFPhosphoinositide (PtdIns) homeostasis requires a tight spatial and temporal regulation during the endocytic process [1]. Indeed, PtdIns(4,5)P2 plays a crucial role in endocytosis by controlling clathrin-coated pit formation, whereas its conversion into PtdIns4P right after scission of clathrin-coated vesicles (CCVs) is essential for successful uncoating and cargo sorting [1-6]. In non-neuronal cells, endosomal PtdIns(4,5)P2 hydrolysis critically relies on the lipid phosphatase OCRL [7-9], the inactivation of which causes the Oculo-Cerebro-Renal syndrome of Lowe [10, 11].
View Article and Find Full Text PDFThe Notch signaling pathway is involved in liver development and regeneration. Here, we investigate the role of the 4 mammalian Notch paralogs in the regulation of hepatoblast proliferation and hepatocytic differentiation. Our model is based on bipotential mouse embryonic liver (BMEL) progenitors that can differentiate into hepatocytes or cholangiocytes in vitro and in vivo.
View Article and Find Full Text PDFThe Notch pathway is involved in cell-cell signaling during development and adulthood from invertebrates to higher eukaryotes. Activation of the Notch receptor by its ligands relies upon a multi-step processing. The extracellular part of the receptor is removed by a metalloprotease of the ADAM family and the remaining fragment is cleaved within its transmembrane domain by a presenilin-dependent γ-secretase activity.
View Article and Find Full Text PDFActivation of mammalian Notch receptor by its ligands induces TNFalpha-converting enzyme-dependent ectodomain shedding, followed by intramembrane proteolysis due to presenilin (PS)-dependent gamma-secretase activity. Here, we demonstrate that a new modification, a monoubiquitination, as well as clathrin-dependent endocytosis, is required for gamma-secretase processing of a constitutively active Notch derivative, DeltaE, which mimics the TNFalpha-converting enzyme-processing product. PS interacts with this modified form of DeltaE, DeltaEu.
View Article and Find Full Text PDFNotch signaling is involved in numerous cell fate decisions in invertebrates and vertebrates. The Notch receptor is a type I transmembrane (TM) protein that undergoes two proteolytic steps after ligand binding, first by an ADAM (a distintegrin and metalloprotease) in the extracellular region, followed by gamma-secretase-mediated cleavage inside the TM domain. We demonstrate here that the murine ligand Delta1 (Dll1) undergoes the same sequence of cleavages, in an apparently signal-independent manner.
View Article and Find Full Text PDFIg gene hypermutation was originally described as the molecular process underlying B cell affinity maturation following a T-dependent immune response. Somatic hypermutation is also used in some species such as sheep, to generate diversity during formation of the primary antibody repertoire. In sheep, B cells mutate their Ig receptor during antigen-independent development in the lymphoid follicles of ileal Peyer's patches, but this process is arrested when these same B cells are cultured in vitro.
View Article and Find Full Text PDFThe Notch signaling pathway is essential in many cell fate decisions in invertebrates as well as in vertebrates. After ligand binding, a two-step proteolytic cleavage releases the intracellular part of the receptor which translocates to the nucleus and acts as a transcriptional activator. Although Notch-induced transcription of genes has been reported extensively, its endogenous nuclear form has been seldom visualized.
View Article and Find Full Text PDF