Publications by authors named "Guozhong Xu"

Scintillation-based X-ray detection has been widely used in various fields from medical diagnostics to security. In this study, we report four new CuI-based hybrid materials consisting of anionic inorganic chains coordinated to cationic ligands. Due to their unique bonding nature, these compounds demonstrate high stability, solution processability, and efficient photoluminescence with photoluminescence quantum yields (PLQYs) reaching ∼85%.

View Article and Find Full Text PDF

Zirconium-based metal-organic frameworks (Zr-MOFs) have been extensively studied due to their very rich structural chemistry. The combination of nearly unlimited carboxylic acid-based linkers and Zr clusters with multiple connectivities has led to diverse structures and specific properties of resultant Zr-MOFs. Herein, we demonstrate the successful use of reticular chemistry to construct two novel Zr-MOFs, HIAM-4040 and HIAM-4040-OH, with zfu topology.

View Article and Find Full Text PDF

Animals' response to a stimulus in one sensory modality is usually influenced by other modalities. One important type of multisensory integration is the cross-modal modulation, in which one sensory modality modulates (typically inhibits) another. Identification of the mechanisms underlying cross-modal modulations is crucial for understanding how sensory inputs shape animals' perception and for understanding sensory processing disorders.

View Article and Find Full Text PDF

Phytoremediation potential of Azolla in removal of nitrogen from wastewater has been promising. However, little is known about the response of Azolla to high concentrations of nitrogen. In this study, the responses of four Azolla species to different concentrations of total nitrogen ranging from 0 to 180 mg L were examined.

View Article and Find Full Text PDF

Cadmium (Cd) presents severe risks to human health and environments. The present study proposed a green option to reduce bioavailable Cd. Rice pot experiments were conducted under continuous flooding with three treatments (T1: intercropping azolla with rice; T2: incorporating azolla into soil before rice transplantation; CK: no azolla).

View Article and Find Full Text PDF

Functional modification and structural design of carbon electrode materials are considered as a cost-effective method to improve their electrochemical performance. In this study, a solvothermal method is applied to realize self-assembly of the metal-organic framework. After simple carbonization and acid treatment, carbon nanosheets with 2D adjustable defective sub-units are successfully prepared for the first time.

View Article and Find Full Text PDF

Dexamethasone (DEX) is associated with many inflammation and metabolic diseases. We analyzed the effects of DEX on the expression of estrogen metabolism enzyme 17β-HSD1 at the optic nerve. Rats were treated with different concentrations of intraperitoneal DEX.

View Article and Find Full Text PDF

Lithium-sulfur batteries are regarded as a promising energy storage system. However, they are plagued by rapid capacity decay, low coulombic efficiency, a severe shuttle effect and low sulfur loading in cathodes. To address these problems, effective carriers are highly demanded to encapsulate sulfur in order to extend the cycle life.

View Article and Find Full Text PDF

Orexin-A, -B play a crucial role in arousal and feeding by activating two G-protein-coupled receptors: orexin receptor 1 (OXR) and orexin receptor 2 (OXR). Orexins, along with orexin receptors, are expressed in retinal neurons, and they have been shown to differentially modulate excitatory AMPA receptors of amacrine and ganglion cells in the inner retina. In this work we report that orexin-B modulates the activity of rod bipolar cells (RBCs) located in the outer retina of rat.

View Article and Find Full Text PDF

Ectopic transgene expression in the retina has been reported in various transgenic mice, indicating the importance of characterizing retinal phenotypes. We examined transgene expression in the VGAT-ChR2-EYFP mouse retina by fluorescent immunohistochemistry and electrophysiology, with special emphasis on enhanced yellow fluorescent protein (EYFP) localization in retinal neuronal subtypes identified by specific markers. Strong EYFP signals were detected in both the inner and outer plexiform layers.

View Article and Find Full Text PDF

Purpose: Although retinal dopamine (DA) has been long implicated in myopia development, current studies demonstrate that retinal DA levels are unaltered in C57BL/6 mice with form-deprivation myopia. This work was undertaken to explore whether and how refractive development is perturbed in this mouse strain when retinal DA levels are reduced by 6-hydroxydopamine (6-OHDA) administration.

Methods: On two successive days, 6-OHDA was injected into the vitreous of P18 mice.

View Article and Find Full Text PDF

A hydroponic culture experiment was conducted to study the responses of 40 Chamaecrista varieties (lines) to 120 mg x L(-1) of Al3+, with the correlations between the relative tolerance values of various characters of different genotypes and the comprehensive evaluation coefficient compared. Among the characters of the genotypes, the relative plant height, relative root dry mass, relative shoot dry mass, and relative root activity could be selected as the important indices for screening the Al-tolerant genotype of Chamaecrista. In the test 40 Chamaecrista varieties (lines), the 86134R2, 2208, 3170, 316, 2211, and 2232 had stronger Al-tolerant capability, belonging to Al-tolerant genotype, whereas the 34721R1, 92985, and 3184 had weaker Al-tolerant capacity, belonging to Al-sensitive genotype.

View Article and Find Full Text PDF

Natriuretic peptides (NPs) exert their actions through three membrane-bound receptors, which are known as NP receptors (NPRs: NPR-A, NPR-B and NPR-C). In this work we examined the expression of three NPRs in rat retinal ganglion cells (GCs), retrogradely labeled and intracellularly dye-injected, by double immunofluorescence labeling. In vertical sections, almost all GCs, retrogradely labeled by cholera toxin B, were stained by antibodies against the three NPRs.

View Article and Find Full Text PDF

The key techniques for determining orientation angle (OA) and interlayer space (d002) of pyrocarbon were investigated by analyzing selected area electron diffraction (SAED) patterns. A series of algorithms, which mainly include the five-point center-determined technique, the integral factor for the ellipse detection, the background subtraction operation and the Gaussian multipeak fitting algorithm, were designed for intensity sampling, data correction, and data fitting. The contribution ratio of the reflection intensity to the average d002 was considered.

View Article and Find Full Text PDF

This study investigates As accumulation and tolerance of the aquatic fern Azolla. Fifty strains of Azolla showed a large variation in As accumulation. The highest- and lowest-accumulating ferns among the 50 strains were chosen for further investigations.

View Article and Find Full Text PDF

The structural allostery and binding interface for the human serum transferrin (Tf)*transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions (Cheng, Y.

View Article and Find Full Text PDF

Hydroxyl radical-mediated protein footprinting is a convenient and sensitive technique for mapping solvent-accessible surfaces of proteins and examining the structure and dynamics of biological assemblies. In this study, the reactivities and tendencies to form easily detectable products for all 20 (common) amino acid side chains along with cystine are directly compared using various standards. Although we have previously reported on the oxidation of many of these residues, this study includes a detailed examination of the less reactive residues and better defines their usefulness in hydroxyl radical-mediated footprinting experiments.

View Article and Find Full Text PDF

Symbiotic Anabeana azollae and its host plant Anabeana-free Azolla were isolated from 16 Azolla accessions representing different Azolla species or geographic origins.DNA polymorphic fragments were obtained by simultaneous RAPD amplification of both symbiont and host. The UPGMA clusters of Anabeana azollae and its host Azolla were established separately based on Dice coefficient caculation and a coordinated relationship was shown between Anabeana azollae and its Azolla host along both individual genetic divergence,but this genetic homology was reduced among different strains within Azolla species while the obvious mutants of Anabeana azollae were detected in some Azolla tested strains collected from different geographic area in the same host species.

View Article and Find Full Text PDF

Hydroxyl radical-mediated footprinting permits detailed examination of structure and dynamic processes of proteins and large biological assemblies, as changes in the rate of reaction of radicals with target peptides are governed by changes in the solvent accessibility of the side-chain probe residues. The precise and accurate determination of peptide reaction rates is essential to successfully probing protein structure using footprinting. In this study, we specifically examine the magnitude and mechanisms of secondary oxidation occurring after radiolytic exposure and prior to mass spectrometric analysis.

View Article and Find Full Text PDF

Protein footprinting based on hydroxyl radical-mediated modification and quantitative mass spectroscopic analysis is a proven technique for examining protein structure, protein-ligand interactions, and structural allostery upon protein complex formation. The reactive and solvent-accessible amino acid side chains function as structural probes; however, correct structural analysis depends on the identification and quantification of all the relevant oxidative modifications within the protein sequence. Sulfur-containing amino acids are oxidized readily and the mechanisms of oxidation are particularly complex, although they have been extensively investigated by EPR and other spectroscopic methods.

View Article and Find Full Text PDF

Ischemic optic neuropathy (ION) is a common disease that can cause a loss of visual acuity in the elderly. We treated ION patients with stellate ganglion block (SGB) and investigated its effects on picture visual evoked potential (P-VEP) and blood flow in the ophthalmic artery (OA) and internal carotid artery (ICA). Twelve ischemic eyes in 12 patients diagnosed by the same ophthalmologist were investigated in this study.

View Article and Find Full Text PDF

Hydroxyl radical-mediated footprinting coupled with mass spectroscopic analysis is a new technique for mapping protein surfaces, identifying structural changes modulated by protein-ligand binding, and mapping protein-ligand interfaces in solution. In this study, we examine the radiolytic oxidation of aspartic and glutamic acid residues to probe their potential use as structural probes in footprinting experiments. Model peptides containing Asp or Glu were irradiated using white light from a synchrotron X-ray source or a cesium-137 gamma-ray source.

View Article and Find Full Text PDF

Objective: To observe the effects and mechanisms of endotoxin pretreatment on the rat lung in endotoxemia.

Methods: Eighty-four male Wistar rats were divided into seven groups (each group containing 12 rats): saline control and lipopolysaccharide (LPS)-treated 2 h, 4 h, 6 h groups and LPS-pretreated 2 h, 4 h, 6 h groups. LPS-pretreated rats were administrated with intraperitoneal injection of 0.

View Article and Find Full Text PDF

Protein footprinting utilizing hydroxyl radicals coupled with mass spectrometry has become a powerful technique for mapping the solvent accessible surface of proteins and examining protein-protein interactions in solution. Hydroxyl radicals generated by radiolysis or chemical methods efficiently react with many amino acid residue side chains, including the aromatic and sulfur-containing residues along with proline and leucine, generating stable oxidation products that are valuable probes for examining protein structure. In this study, we examine the radiolytic oxidation chemistry of histidine, lysine, and arginine for comparison with their metal-catalyzed oxidation products.

View Article and Find Full Text PDF