Publications by authors named "Guozhen Cao"

Article Synopsis
  • Scientists are studying PLK1 as a way to treat small cell lung cancer (SCLC) but need to understand better how it works with certain drugs.
  • They found that a protein called BRCA1 affects how SCLC cells respond to a drug called BI-2536, and combining it with another drug, alisertib, can cause cancer cells to die.
  • The study shows that two important pathways, MYC/MYCN and RAD51, are key for making SCLC cells react to BI-2536, suggesting using both drugs together might be a new way to help patients with this type of cancer.
View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is an aggressive high-grade neuroendocrine carcinoma of the lung associated with early metastasis and an exceptionally poor prognosis. Little progress has been made in developing efficacious targeted therapy for this recalcitrant disease. Herein, we showed that H3.

View Article and Find Full Text PDF
Article Synopsis
  • * Covalently closed circular RNAs (circRNAs) have been recognized as important regulators in various cancers, including GC, and show altered patterns in GC that contribute to its invasion and spread.
  • * The paper aims to explore the roles of circRNAs in GC metastasis and drug resistance, discussing their mechanisms and potential as targets for future therapies.
View Article and Find Full Text PDF

Background: Multiple lines of evidence have demonstrated that circular RNAs (circRNAs) play oncogenic or tumor-suppressive roles in various human cancers. Nevertheless, the biological functions of circRNAs in small cell lung cancer (SCLC) are still elusive.

Methods: CircVAPA (annotated as hsa_circ_0006990) was identified by mining the circRNA profiling dataset of six paired SCLC tissues and the RNA-seq data of serum samples from 36 SCLC patients and 118 healthy controls.

View Article and Find Full Text PDF

Accumulating evidence has witnessed the Kelch-like ECH-associated protein 1(KEAP1)- nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis is the main regulatory factor of cell resistance to endogenous and exogenous oxidative assaults. However, there are few studies addressing the upstream regulatory factors of KEAP1. Herein, bioinformatic analysis suggests bromodomain-containing protein 4 (BRD4) as a potential top transcriptional regulator of KEAP1 in lung cancer.

View Article and Find Full Text PDF

Alternative splicing (AS) is a common and pivotal process for eukaryotic gene expression regulation, which enables a precursor RNA to produce multiple transcript variants with diverse cellular functions. Aberrant AS represents a hallmark of cancer, engaged in all stages of tumorigenesis from initiation to metastasis. Accumulating pieces of evidence have revealed the involvement of non-coding RNAs (ncRNAs) in regulating AS in human cancers.

View Article and Find Full Text PDF

The response rate of topotecan, as a second-line chemotherapeutic drug for small cell lung cancer, is ~20%. DNA/RNA helicase SLFN11 (schlafen family member 11), a member of the Schlafen (SLFN) family, is a crucial determinant of response to many DNA damaging agents, expression of SLFN11 tends to augment the antitumor effects of the commonly used DNA-targeting agents. In the present study we investigated how SLFN11 expression regulated the sensitivity of small cell lung cancer to topotecan.

View Article and Find Full Text PDF

Poly (ADP-ribose) polymerase 1 (PARP1) is highly expressed in small cell lung cancer (SCLC) and has emerged as an attractive target for treatment of SCLC. However, the clinical significance of PARP1 expression in SCLC remains elusive. In this study, we showed that high PARP1 expression was associated with better overall survival (OS), and was positively correlated with the expression of paralogs in patients with SCLC.

View Article and Find Full Text PDF

In this study, combined genome, transcriptome, and metabolome analysis was performed for eight Saccharomyces cerevisiae mitochondrial respiration-deficient mutants. Each mutant exhibited a unique nuclear genome mutation pattern; the nuclear genome mutations, and thus potentially affected genes and metabolic pathways, showed a co-occurrence frequency of ≤ 3 among the eight mutants. For example, only a lipid metabolism-related pathway was likely to be affected by the nuclear genome mutations in one of the mutants.

View Article and Find Full Text PDF

Mitochondrial dysfunction in Saccharomyces cerevisiae was selected as a marker of ion penetration following carbon ion beam (CIB) irradiation. Respiration-deficient mutants were screened. Following confirmation of negligible spontaneous mutation, eight genetically stable S.

View Article and Find Full Text PDF

Ionizing radiation (IR) can result in serious genomic instability and genotoxicity by causing DNA damage. Carbon ion (CI) beams and X-rays are typical IRs and possess high-linear energy transfer (LET) and low-LET, respectively. In this article, a comet assay that was optimized by decreasing the electrophoresis time (8 minutes) and voltage (0.

View Article and Find Full Text PDF

Saccharomyces cerevisiae has served as a eukaryotic model in radiation biology studies of cellular responses to ionizing radiation (IR). Research in this field has thus far mainly been focused on DNA strand breaks, DNA base damage, or inhibition of protein activity. However, the effects of IR on S.

View Article and Find Full Text PDF

Chloride channels are expressed ubiquitously in different cells. However, the activation and roles of volume-activated chloride channels under normal isotonic conditions are not clarified, especially in lymphatic cells. In this study, the activation of basal and volume-activated chloride currents and their roles in maintenance of basal cell volume under isotonic conditions were investigated in human acute lymphoblastic leukemia Molt4 cells.

View Article and Find Full Text PDF