Aerogels have been widely studied in the field of thermal insulation. Herein, we reported a kind of conjugated micropolymer (CMP) aerogel synthesized by 1,3,5-triethynylbenzene and 2-amino-3,5-dibromopyridine. To enhance the flame-retardant property, we composited hydroxyapatite (HAP) nanowires with a CMP aerogel.
View Article and Find Full Text PDFSolar-driven atmospheric water harvesting technology has the advantage of not being limited by geography and has great potential in solving the freshwater crisis. Here, we first propose a purely natural and degradable superhydrophilic composite macroporous hygroscopic material by applying guar gum (GG) to atmospheric water harvesting. The material consists of GG-cellulose nanofibers (CNFs) as a porous substrate material, limiting the hygroscopic factor lithium chloride (LiCl) in its three-dimensional (3D) network structure, and carbon nanotubes (CNTs) play a photothermal conversion role.
View Article and Find Full Text PDFSolar-driven interfacial evaporation co-generation (SIE-CG) technology is of great significance in solving the problem of water and energy shortage. Herein, we report the ionic liquid-assisted alignment of waste biomass tea residue-based microcrystalline cellulose for aerogels (abbreviated as TPPA-5) with aligned channels for solar-driven interfacial evaporation co-generation. In the ionic liquid, strong H-bonding is formed between the pyranoid rings of cellulose combined with the slow freezing technique, resulting in the microcrystalline cellulose being reoriented, which allowed TPPA-5 to form abundant aligned channels after solvent replacement and freeze-drying.
View Article and Find Full Text PDF