Truncated cluster models represent an effective way for simulating x-ray spectra of 2D materials. Here, we systematically assessed the influence of two key parameters, the cluster shape (honeycomb, rectangle, or parallelogram) and size, in x-ray photoelectron (XPS) and absorption (XAS) spectra simulations of three 2D materials at five K-edges (graphene, C 1s; CN, C/N 1s; h-BN, B/N 1s) to pursue the accuracy limit of binding energy (BE) and spectral profile predictions. Several recent XPS experiments reported BEs with differences spanning 0.
View Article and Find Full Text PDFPolynitrogen molecules and ions are important building blocks of high energy density compounds (HEDCs). High energy bonds formed at the N sites can be effectively probed by X-ray photoelectron spectroscopy (XPS) at the N K-edge. In this work, with the density functional theory and the ΔKohn-Sham scheme, we simulated the N1s ionic potentials (IPs) of 72 common polynitrogen molecules [tetrazoles, pentazole (NH), diazines, triazines, tetrazines, furazans, oxazoles and oxadiazoles], ions [pentazolate anion (cyclo-N), pentazenium cation (N), ], and molecular (NH⋯NH, HO⋯NH) and ionic (NH⋯N, HO⋯N) pairs, as well as mononitrogen relatives.
View Article and Find Full Text PDFCancer Manag Res
February 2021
Background: Colorectal cancer (CRC) is a common digestive system malignancy. Ferroptosis, a new form of regulated cell death, plays a vital role in the pathogenesis and therapy of cancers.
Objective: We aimed to study the role of apatinib in ferroptosis of CRC cells and its potential mechanisms.