Publications by authors named "Guoxun Wang"

The intestinal mucosal surface is directly exposed to daily fluctuations in food and microbes driven by 24-hour light and feeding cycles. Intestinal epithelial tuft cells are key sentinels that surveil the gut luminal environment, but how these cells are diurnally programmed remains unknown. Here, we show that histone deacetylase 3 (HDAC3) controls tuft cell specification and the diurnal rhythm of its biogenesis, which is regulated by the gut microbiota and feeding schedule.

View Article and Find Full Text PDF

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but a mechanism of norovirus-infection triggered cell death and lysis are unknown. Here we have identified a molecular mechanism of norovirus-induced cell death.

View Article and Find Full Text PDF

Non-enveloped viruses require cell lysis to release new virions from infected cells, suggesting that these viruses require mechanisms to induce cell death. Noroviruses are one such group of viruses, but there is no known mechanism that causes norovirus infection-triggered cell death and lysis. Here we identify a molecular mechanism of norovirus-induced cell death.

View Article and Find Full Text PDF

Peroxisome proliferator activated receptor (PPAR) agonists are commonly used to treat metabolic disorders in humans because they regulate fatty acid oxidation and cholesterol metabolism. In addition to their roles in controlling metabolism, PPAR agonists also regulate inflammation and are immunosuppressive in models of autoimmunity. We aimed to test whether activation of PPARα with clinically relevant ligands could impact gammaherpesvirus infection using murine gammaherpesvirus-68 (MHV68, MuHV-4).

View Article and Find Full Text PDF

Genome editing holds great potential for cancer treatment due to the ability to precisely inactivate or repair cancer-related genes. However, delivery of CRISPR/Cas to solid tumours for efficient cancer therapy remains challenging. Here we targeted tumour tissue mechanics via a multiplexed dendrimer lipid nanoparticle (LNP) approach involving co-delivery of focal adhesion kinase (FAK) siRNA, Cas9 mRNA and sgRNA (siFAK + CRISPR-LNPs) to enable tumour delivery and enhance gene-editing efficacy.

View Article and Find Full Text PDF

Gammaherpesviruses, such as Epstein-Barr virus (EBV), Kaposi's sarcoma associated virus (KSHV), and murine γ-herpesvirus 68 (MHV68), establish latent infection in B cells, macrophages, and non-lymphoid cells, and can induce both lymphoid and non-lymphoid cancers. Research on these viruses has relied heavily on immortalized B cell and endothelial cell lines. Therefore, we know very little about the cell type specific regulation of virus infection.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are by-products of cellular respiration that can promote oxidative stress and damage cellular proteins and lipids. One canonical role of ROS is to defend the cell against invading bacterial and viral pathogens. Curiously, some viruses, including herpesviruses, thrive despite the induction of ROS, suggesting that ROS are beneficial for the virus.

View Article and Find Full Text PDF

Nucleotide-binding, leucine-rich repeat receptors (NLRs) perceive pathogen effectors to trigger plant immunity. Biochemical mechanisms underlying plant NLR activation have until now remained poorly understood. We reconstituted an active complex containing the coiled-coil NLR ZAR1, the pseudokinase RKS1, uridylated protein kinase PBL2, and 2'-deoxyadenosine 5'-triphosphate (dATP), demonstrating the oligomerization of the complex during immune activation.

View Article and Find Full Text PDF

Pathogen recognition by nucleotide-binding (NB), leucine-rich repeat (LRR) receptors (NLRs) plays roles in plant immunity. The pv. effector AvrAC uridylylates the PBL2 kinase, and the latter (PBL2) acts as a ligand to activate the NLR ZAR1 precomplexed with the RKS1 pseudokinase.

View Article and Find Full Text PDF

Receptor-like kinases (RLKs) and Receptor-like proteins (RLPs) play crucial roles in plant immunity, growth, and development. Plants deploy a large number of RLKs and RLPs as pattern recognition receptors (PRRs) that detect microbe- and host-derived molecular patterns as the first layer of inducible defense. Recent advances have uncovered novel PRRs, their corresponding ligands, and mechanisms underlying PRR activation and signaling.

View Article and Find Full Text PDF

In plants, host response to pathogenic microbes is driven both by microbial perception and detection of modified-self. The Xanthomonas campestris effector protein AvrAC/XopAC uridylylates the Arabidopsis BIK1 kinase to dampen basal resistance and thereby promotes bacterial virulence. Here we show that PBL2, a paralog of BIK1, is similarly uridylylated by AvrAC.

View Article and Find Full Text PDF

Gene regulatory networks (GRNs) control development via cell type-specific gene expression and interactions between transcription factors (TFs) and regulatory promoter regions. Plant organ boundaries separate lateral organs from the apical meristem and harbor axillary meristems (AMs). AMs, as stem cell niches, make the shoot a ramifying system.

View Article and Find Full Text PDF