The mycelial networks of fungi promote the interaction between the originally isolated bacteria, thereby potentially enhancing the exchange of nutrients and the horizontal transfer of genetic materials. However, the driving effect of fungi on antibiotic resistance genes (ARGs) during mesophilic facultative composting is still unclear. This study aims to elucidate the changes in ARGs and underlying mechanisms during the mesophilic composting of manure.
View Article and Find Full Text PDFCompost phytotoxicity affects the safety of organic fertilizers returned to the field, thus hindering the breeding cycle, so it is essential to reduce the compost phytotoxicity. The phytotoxicity of compost was estimated utilizing the germination index (GI) and the aqueous substances (organics and ions) present in compost correlated closely with GI. This study assessed the effect of carbon additives from different plant sources (mushroom substrates (MS), cornstalks (CS) and garden substrates (GS)) on maturity parameters (temperature, pH, EC, C/N), content of aqueous carbon and nitrogen matters, salt ions, heavy metal ions, and microbiome of piles when composting with chicken manure and especially focused on their effect on GI.
View Article and Find Full Text PDFIn this study, we analyzed bioaerosol emission characteristics and potential risks of antimicrobial resistance (AMR) during composting using the impaction culture method and metagenomic sequencing. The results showed that the highly saturated water vapor in the emission gas mitigated particulate matter emission during the thermophilic period. About the bioaerosols, the airborne aerobic bacterial emissions were suppressed as composting enters the mature period, and the airborne fungi are usually present as single-cell or small-cell aggregates (< 3.
View Article and Find Full Text PDFThis study explored the odor composition and emission in chicken manure composting process, employing chemical fixatives and biochar to mitigate odors effectively. Compost maturity, ammonia, sulfur-containing odor emissions, as well as the bacterial and fungal community structure were analyzed to assess composting performance and mechanisms. The results indicated that four malodorous substances were identified as major contributors: dimethyl disulfide (MeS), hydrogen sulfide (HS), methyl sulfide (MeS), and ammonia (NH).
View Article and Find Full Text PDFVermicomposting is an efficient bioconversion technology for recycling nutrients from organic waste materials. The biodegradability of raw materials has a significant impact on the earthworm transformation product. However, the management of carbon bioavailability is often overlooked during the vermicomposting process due to the varying degradability of C-rich source in different organic waste.
View Article and Find Full Text PDFThe effect of different levels of temperature on resistance genes is not clear in mesophilic static composting (<50 °C). This study conducted livestock manure composting with different temperature gradients from 20 to 50 °C, it was found that the reduction rates of risk rank-I antibiotic resistance genes (from 3 % to 66 %), metal resistance genes (from -50 % to 76 %) and bacterial pathogens (from 72 % to 91 %) all increased significantly with increasing temperature from 20 to 50°C. The vulnerability of bacterial communities increased significantly, and the assembly process of bacterial communities changed from deterministic to stochastic with the increase of composting temperature.
View Article and Find Full Text PDFTechno-economic assessment (TEA) of a valorization of bulking agent (BA) ratios on the food waste compost value chain is made to assess economic feasibility. TEA was performed with two plans (Plan A: existing composting facilities; Plan B: new composting facilities) and each plan was under four scenarios. The BA (i.
View Article and Find Full Text PDFThe elevated levels of antibiotic resistance genes (ARGs) in livestock manure represent a significant threat to both the environment and human health. Composting has been recognized as an effective strategy to mitigate the abundance of ARGs in manure. However, notable rebounds in ARGs abundance have been observed during this process.
View Article and Find Full Text PDFBiogas slurry from anaerobic digestion is rich in nutrients but has not been fully utilized due to a high content of suspended solids (SS) causing clogging during agricultural irrigation. This study aimed to evaluate the performance of a novel chitosan and polyferric sulfate (CTS-PFS) composite coagulant for simultaneous flocculation and floatation to enhance SS removal while preserving nutrients in biogas slurry. Orthogonal method was used for experimental design to determine the optimal synthesis and operational conditions of CTS-PFS.
View Article and Find Full Text PDFEnviron Sci Technol
April 2024
Composting is widely used for organic waste management and is also a major source of nitrous oxide (NO) emission. New insight into microbial sources and sinks is essential for process regulation to reduce NO emission from composting. This study used genome-resolved metagenomics to decipher the genomic structures and physiological behaviors of individual bacteria for NO sources and sinks during composting.
View Article and Find Full Text PDFHyperthermophilic composting, characterized by temperatures equal to or exceeding 75 °C, offers superior compost maturity and performance. Inoculation with thermophilic bacteria presents a viable approach to achieving hyperthermophilic composting. This study investigates the effects of inoculating thermophilic bacteria, isolated at different temperatures (50 °C, 60 °C, and 70 °C) into compost on maturity, gaseous emissions, and microbial community dynamics during co-composting.
View Article and Find Full Text PDFAerobic composting has been considered as a pragmatic technique to convert food waste digestate into high-quality biofertiliser. Nevertheless, massive gaseous emission and immature product remain the primary challenges in food waste digestate composting. Thus, the performance of multi-stage aeration regimes to improve gaseous emissions and organic humification during food waste digestate composting was investigated in this study.
View Article and Find Full Text PDFThis study assessed the impact of different plant-derived biochar (cornstalk, rice husk, and sawdust) on bacterial community and functions for compost maturity and gaseous emissions during the composting of food waste. Results showed that all biochar strengthened organic biotransformation and caused a higher germination index on day 12 (over 100%), especially for rice husk biochar to enhance the growth of Thermobifida related to aerobic chemoheterotrophy. Rice husk biochar also achieved a relatively higher reduction efficiency of methane (85.
View Article and Find Full Text PDFRegulating nitrogen source composition is efficient approach to accelerate the spent mushroom substrate (SMS) composting process. However, currently, most traditional composting study only focuses on total C/N ratio of initial composting material. Rarely research concerns the effect of carbon or nitrogen components at different degradable level and their corresponding decomposed-substances on humification process.
View Article and Find Full Text PDFThere is escalating interest in composting of post-consumption food waste (PCFW) to recycle nutrients and mitigate pollution by inappropriate disposal. The present study aimed to evaluate the performance of bioaugmentation to composting of PCFW, which is in difficulties caused by high sugar, protein and gross lipid content. Inoculation of the microbial consortium effectively induced rapid temperature and pH rising, which led to OM reduction rate at 25.
View Article and Find Full Text PDFThe phytotoxicity of the compost aqueous extracts determines the maturity. To improve the accuracy of compost maturity evaluation using the seed germination index (GI) method, different extraction methods (different moisture content and extraction ratio) were designed to obtain samples with various phytotoxic level. This study analyzed the effects of different extraction condition of compost samples on GI, and established the relationship between phytotoxicity and GI.
View Article and Find Full Text PDFThis study investigated the effects of free air space (FAS) (45%, 55%, 65%) on bacterial dynamics for gaseous emissions during kitchen waste composting. Results show that FAS increase from 45% to 65% elevated oxygen diffusivity to inhibit bacteria for fermentation (e.g.
View Article and Find Full Text PDFThis study aims to reveal the underlying mechanisms of mature compost addition for improving organic waste composting. Composting experiments and metagenomic analysis were conducted to elucidate the role of mature compost addition to regulate microbial metabolisms and physiological behaviors for composting amelioration. Mature compost with or without inactivation pretreatment was added to the composting of kitchen and garden wastes at 0%, 5%, 10%, 15%, and 20% (by wet weight) for comparison.
View Article and Find Full Text PDFOrganic solid wastes (OSWs) are important reservoirs for antibiotic resistance genes (ARGs). Aerobic composting transforms OSWs into fertilizers. In this study, we investigated ARGs dynamics and their driving mechanisms in three OSW composts: pig manure (PM), kitchen waste (KC), and sewage sludge (SG).
View Article and Find Full Text PDFAlthough facultative heap composting is widely used in small and medium-sized livestock farms in China, there are few studies on greenhouse gas (GHG) and odor emissions from this composting system. This study focused on GHG and odor emissions from facultative heap composting of four types of livestock manure and revealed the relationship between the gaseous emissions and microbial communities. Results showed that pig, sheep, and cow manure reached high compost maturity (germination index (GI) > 70%), whereas chicken manure had higher phytotoxicity (GI = 0.
View Article and Find Full Text PDFThis study tracked the fate of nine detected heavy metals in an industrial swine farm with integrated waste treatment, including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show that heavy metals exhibited different transformation behaviors in the treatment streamline with Fe, Zn, Cu and Mn as the most abundant ones in raw swine waste. The overall removal of water-soluble heavy metals averaged at 30 %, 24 % and 42 % by anoxic stabilization, anaerobic digestion and A/O unit, respectively.
View Article and Find Full Text PDFThis study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units.
View Article and Find Full Text PDFThis study assessed the impact of aeration intensity on food waste digestate composting to simultaneously govern organic humification and gaseous emissions. Results show that an augment in the aeration intensity from 0.1 to 0.
View Article and Find Full Text PDFManure covered by organic materials during the storage has shown that it can effectively reduce emissions of greenhouse gases, but few studies have focused on the bacterial communities in manure or the coverage and mechanism responsible for reducing gas emissions. Therefore, this study investigated the impacts and mechanisms of cornstalk and sawdust coverings on greenhouse gas emissions during sheep manure storage. Sheep manure covered by organic material reduced nitrous oxide (NO) emissions (42.
View Article and Find Full Text PDF