LiCoO (LCO) is a prominent high-voltage cathode material due to its exceptional energy density and impressive theoretical specific capacity of 274 mAh g. However, challenges such as irreversible structural phase transitions, loss of reactive oxygen, and cobalt dissolution can lead to unstable interfaces between the electrolyte and the LCO cathode. In this study, sulfolane (SUL)-based composite polymer electrolytes (CPEs) were synthesized through in-situ polymerization, and the LCO cathode was modified using vinylidene carbonate (VC) and lithium difluoro(oxalato)borate (LiDFOB).
View Article and Find Full Text PDFCleft palate is the most prevalent congenital condition. Cleft palate is brought on by an exogenous chemical called all-trans retinoic acid (atRA). In order to indirectly control gene expression, long chain non-coding RNAs (lncRNAs) act as competitive endogenous RNA (ceRNA) sponges.
View Article and Find Full Text PDFIn utero exposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) can contribute to high rates of cleft palate (CP) formation, but the mechanistic basis for these effects remains uncertain. Here, multi-omics-based metabolomic and transcriptomic analyses were employed to characterize the etiological basis for TCDD-induced CP on gestational day 14.5 (GD14.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
June 2024
Background: The early diagnosis of gastric cancer (GC) and overcoming chemotherapy resistance is challenging. The aberrant expression of zinc finger protein 281 (ZNF281) and the over-activation of the Wnt/β-catenin pathway are oncogenic factors and confer tumor chemoresistance. ZNF281 modulates the Wnt/β-catenin pathway to influence malignant tumor behavior.
View Article and Find Full Text PDFExposure to the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in utero can result in high rates of cleft palate (CP) formation, yet the underlying mechanisms remain to be characterized. In vivo, the lncRNA Meg3 was upregulated following TCDD treatment in CP-associated murine embryonic palatal tissue, with concomitant changes in proliferative and apoptotic activity in these murine embryonic palatal mesenchymal (MEPM) cells. Meg3 can modulate the TGF-β/Smad to control the proliferation, survival, and differentiation of cells.
View Article and Find Full Text PDFAll-trans retinoic acid (atRA) is a teratogen that can induce cleft palate formation. During palatal development, murine embryonic palate mesenchymal (MEPM) cell proliferation is required for the appropriate development of the palatal frame, with Meg3 serving as a key regulator of the proliferative activity of these cells and the associated epithelial-mesenchymal transition process. DNA methylation and signaling via the TGFβ/Smad pathway are key in regulating embryonic development.
View Article and Find Full Text PDFThe way that males and females react to environmental exposures and negative impacts on their neurological systems is often different. Although previous research has examined the cognitively impairing effects of solitary metal exposures, the relationship between metal mixtures and cognitive function, particularly when considering an individual's sex, remains elusive. This study aimed to investigate the sex differences in the association between multiple metal combinations and cognitive function in older Americans.
View Article and Find Full Text PDFCholestasis is a common clinical disease caused by a disorder in bile acids (BAs) homeostasis, which promotes its development. The Farnesoid X receptor (FXR) plays a critical role in regulating BAs homeostasis, making it an essential target for cholestasis treatment. Although several active FXR agonists have been identified, effective drugs for cholestasis are still lacking.
View Article and Find Full Text PDFWhile exposure to high levels of all-trans retinoic acid (atRA) during pregnancy is known to suppress murine embryonic palate mesenchymal (MEPM) cells proliferation and to result in cleft palate (CP) development, the underlying mechanisms are poorly understood. Accordingly, this study was designed with the goal of clarifying the etiological basis for atRA-induced CP. A murine model of CP was established via the oral administration of atRA to pregnant mice on gestational day (GD) 10.
View Article and Find Full Text PDF