Phys Rev E
September 2024
The general theoretical description of spin self-diffusion under a nonlinear gradient magnetic field is proposed, which extends the effective phase diffusion method for a linear gradient field. Based on the phase diffusion, the proposed method reveals the general features of phase evolutions in nonlinear gradient fields. There are three types of phase evolutions: phase diffusion, float phase evolution, and shift evolution based on the starting position.
View Article and Find Full Text PDFCopper is an essential trace metal for biological processes in humans and animals. A low level of copper detection at physiological pH using fluorescent probes is very important for in vitro applications, such as the detection of copper in water or urine, and in vivo applications, such as tracking the dynamic copper concentrations inside cells. Copper homeostasis is disrupted in neurological diseases like Alzheimer's disease, and copper forms aggregates with amyloid beta (Ab42) peptide, resulting in senile plaques in Alzheimer's brains.
View Article and Find Full Text PDFPhase-time coupling is a natural process in the phase random walks of a spin system; however, its effect on the nuclear magnetic resonance (NMR) relaxation is a challenge to the established theories such as the second-order quantum perturbation theory. This paper extends the recently developed phase diffusion method to treat the phase-time coupling effect, based on uncoupled phase diffusions, and coupled random walks. The instantaneous projection of the rotating random field is employed to get the accumulated phase of the NMR observable.
View Article and Find Full Text PDFThe effect of boundary relaxation on pulsed field gradient (PFG) anomalous restricted diffusion is investigated in this paper. The PFG signal attenuation expressions of anomalous diffusion in plate, sphere, and cylinder are derived based on fractional calculus. In addition, approximate expressions for boundary relaxation induced short time signal attenuation under zero gradient field and boundary relaxation affected short time apparent diffusion coefficients are given in this paper.
View Article and Find Full Text PDFA functionalized dumbbell probe (FDP) based amplification method, termed as a cascading exponential amplification DNA machine (CEA-DNA machine), has been developed to autonomously accumulate single G-quadruplexes (SGQs) and twin-G-quadruplexes (TGQs) for robust fluorescence signal-on probing of miRNA-21.
View Article and Find Full Text PDFAnomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) techniques have been increasingly used to study anomalous diffusion in nuclear magnetic resonance and magnetic resonance imaging. However, the interpretation of PFG anomalous diffusion is complicated.
View Article and Find Full Text PDFPulsed field gradient (PFG) NMR is a noninvasive tool to study anomalous diffusion, which exists widely in many systems such as in polymer or biological systems, in porous material, in single file structures and in fractal geometries. In a real system, the diffusion could be a restricted or a tortuous anomalous diffusion, rather than a free diffusion as the domains for fast and slow transport could coexist. Though there are signal attenuation expressions for free anomalous diffusion in literature, the signal attenuation formalisms for restricted anomalous diffusion is very limited, except for a restricted time-fractional diffusion within a plate reported recently.
View Article and Find Full Text PDFJ Magn Reson
August 2016
An instantaneous signal attenuation (ISA) method for analyzing pulsed field gradient (PFG) fractional diffusion (FD) has been developed, which is modified from the propagator approach developed in 2001 by Lin et al. for analyzing PFG normal diffusion. Both, the current ISA method and the propagator method have the same fundamental basis that the total signal attenuation (SA) is the accumulation of all the ISA, and the ISA is the average SA of the whole diffusion system at each moment.
View Article and Find Full Text PDFWe calculate the efficiency at the unified trade-off optimization criterion (the so-called maximum Ω criterion) representing a compromise between the useful energy and the lost energy of heat engines operating between two reservoirs at different temperatures and chemical potentials, and demonstrate that the linear coefficient 3/4 and quadratic coefficient 1/32 of the efficiency at maximum Ω are universal for heat engines under strong coupling and symmetry conditions. It is further proved that the conclusions obtained here also apply to the ecological optimization criterion.
View Article and Find Full Text PDFInter-molecular multiple quantum coherence (iMQC) has important applications in NMR and MRI. However, the current theoretical methods still have some difficulties in analyzing the behavior of iMQC signal attenuation of pulsed field gradient diffusion experiments. In this paper, the iMQC diffusion experiments were analyzed by an effective phase shift diffusion equation (EPSDE) method, which is based on the idea that the accumulating phase shift (APS) can be viewed as the result of a diffusion process in virtual phase space (VPS) with effective diffusion coefficient K(2)(t) D (rad(2)/s) where K(t)=∫0 (t)γg(t')dt' is a wavenumber and D is the physical diffusion coefficient of the spin carrier in the real space.
View Article and Find Full Text PDFPulsed field gradient (PFG) diffusion measurement has a lot of applications in NMR and MRI. Its analysis relies on the ability to obtain the signal attenuation expressions, which can be obtained by averaging over the accumulating phase shift distribution (APSD). However, current theoretical models are not robust or require approximations to get the APSD.
View Article and Find Full Text PDFBased on two capacitively coupled quantum dots in the Coulomb-blockade regime, a model of three-terminal quantum-dot refrigerators is proposed. With the help of the master equation, the transport properties of steady-state charge current and energy flow between two quantum dots and thermal reservoirs are revealed. It is expounded that such a structure can be used to construct a refrigerator by controlling the voltage bias and temperature ratio.
View Article and Find Full Text PDFPurpose: In this report, the feasibility of using blood as an agent for Chemical Exchange Saturation Transfer (CEST) effect is investigated.
Methods: The CEST effect of porcine blood samples was investigated on a 3.0 T MRI scanner using various power levels and on a 14.
Solid State Nucl Magn Reson
September 2004
Xenon-129 spectra in some heterogeneous polymer systems consist of two resonances which collapse to a single resonance as a function of temperature. Two different resonances arise from spatially separated, distinct sorption environments and spectral collapse occurs when xenon atoms diffuse from one environment to the other at a sufficiently fast rate. This exchange mechanism involves a distribution of time constants and a two domain lattice model is used to generate a realistic distribution of correlation times resulting from diffusion in a heterogeneous matrix.
View Article and Find Full Text PDF