NUDC (nuclear distribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.
View Article and Find Full Text PDFUnlabelled: NUDC ( nu clear d istribution protein C) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown.
View Article and Find Full Text PDFArf-like protein 2 (ARL2) is a ubiquitously expressed small GTPase with multiple functions. In a cell culture, ARL2 participates with tubulin cofactor D (TBCD) in the neogenesis of tubulin αβ-heterodimers, the building blocks of microtubules. To evaluate this function in the retina, we conditionally deleted ARL2 in mouse retina at two distinct stages, either during the embryonic development () or after ciliogenesis specifically in rods ().
View Article and Find Full Text PDFCentrosomal protein of 164 kDa (CEP164) is located at distal appendages of primary cilia and is necessary for basal body (BB) docking to the apical membrane. To investigate the function of photoreceptor CEP164 before and after BB docking, we deleted CEP164 during retina embryonic development (Six3Cre), in postnatal rod photoreceptors (iCre75) and in mature retina using tamoxifen induction (Prom1-ETCre). BBs dock to the cell cortex during postnatal day 6 (P6) to extend a connecting cilium (CC) and an axoneme.
View Article and Find Full Text PDFINPP5E, also known as pharbin, is a ubiquitously expressed phosphatidylinositol polyphosphate 5-phosphatase that is typically located in the primary cilia and modulates the phosphoinositide composition of membranes. Mutations to or loss of INPP5E is associated with ciliary dysfunction. INPP5E missense mutations of the phosphatase catalytic domain cause Joubert syndrome in humans-a syndromic ciliopathy affecting multiple tissues including the brain, liver, kidney, and retina.
View Article and Find Full Text PDFCytoplasmic dynein (dynein 1), a major retrograde motor of eukaryotic cells, is a 1.4 MDa protein complex consisting of a pair of heavy chains (DYNC1H1) and a set of heterodimeric noncatalytic accessory components termed intermediate, light intermediate and light chains. DYNC1H1 (4644 amino acids) is the dynein backbone encoded by a gene consisting of 77 exons.
View Article and Find Full Text PDFPhotoreceptors are polarized neurons, with specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment (OS) where vision begins, an inner segment (IS) where protein synthesis occurs and a synaptic terminal for signal transmission to second-order neurons. The OS is a large, modified primary cilium attached to the IS by a slender connecting cilium (CC), the equivalent of the transition zone (TZ).
View Article and Find Full Text PDFCentrins (CETN1-4) are ubiquitous and conserved EF-hand-family Ca-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors.
View Article and Find Full Text PDFPhotoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia.
View Article and Find Full Text PDFRAB28, a member of the RAS oncogene family, is a ubiquitous, farnesylated, small GTPase of unknown function present in photoreceptors and the retinal pigmented epithelium (RPE). Nonsense mutations of the human gene cause recessive cone-rod dystrophy 18 (CRD18), characterized by macular hyperpigmentation, progressive loss of visual acuity, RPE atrophy, and severely attenuated cone and rod electroretinography (ERG) responses. In an attempt to elucidate the disease-causing mechanism, we generated mice by deleting exon 3 and truncating RAB28 after exon 2.
View Article and Find Full Text PDFRab11a and Rab8a are ubiquitous small GTPases shown as required for rhodopsin transport in Xenopus laevis and zebrafish photoreceptors by dominant negative (dn) disruption of function. Here, we generated retina-specific Rab11a (retRab11a) and Rab8a (retRab8a) single and double knockout mice to explore the consequences in mouse photoreceptors. Rhodopsin and other outer segment (OS) membrane proteins targeted correctly to OS and electroretinogram (ERG) responses in all three mutant mouse lines were indistinguishable from wild-type (WT).
View Article and Find Full Text PDFCentrins are ancient calmodulin-related Ca(2+)-binding proteins associated with basal bodies. In lower eukaryotes, Centrin2 (CETN2) is required for basal body replication and positioning, although its function in mammals is undefined. We generated a germline CETN2 knock-out (KO) mouse presenting with syndromic ciliopathy including dysosmia and hydrocephalus.
View Article and Find Full Text PDFCentrins are calmodulin-like Ca(2+)-binding proteins that can be found in all ciliated eukaryotic cells from yeast to mammals. Expressed in male germ cells and photoreceptors, centrin 1 (CETN1) resides in the photoreceptor transition zone and connecting cilium. To identify its function in mammals, we deleted Cetn1 by homologous recombination.
View Article and Find Full Text PDFDendritic patterning and spine morphogenesis are crucial for the assembly of neuronal circuitry to ensure normal brain development and synaptic connectivity as well as for understanding underlying mechanisms of neuropsychiatric diseases and cognitive impairments. The Rho GTPase family is essential for neuronal morphogenesis and synaptic plasticity by modulating and reorganizing the cytoskeleton. Here, we report that protocadherin (Pcdh) clusters and cell adhesion kinases (CAKs) play important roles in dendritic development and spine elaboration.
View Article and Find Full Text PDFInterneurons are extremely diverse in the mammalian brain and provide an essential balance for functional neural circuitry. The vast majority of murine cortical interneurons are generated in the subpallium and migrate tangentially over a long distance to acquire their final positions. By using a mouse line with a deletion of the Celsr3 (Flamingo, or Fmi1) gene and a knock-in of the green fluorescent protein reporter, we find that Celsr3, a member of the nonclustered protocadherin (Pcdh) family, is predominantly expressed in the cortical interneurons in adults and in the interneuron germinal zones in embryos.
View Article and Find Full Text PDFWe describe here a streamlined procedure for targeting vector construction, which often is a limiting factor for gene targeting (knockout) technology. This procedure combines various highly efficient recombination-based cloning methods in bacteria, consisting of three steps. First step is the use of Red-pathway-mediated recombination (recombineering) to capture a genomic fragment into a Gateway-compatible vector.
View Article and Find Full Text PDFHere we describe a practical Cre-loxP and piggyBac transposon-based mutagenesis strategy to systematically mutate coding sequences and/or the vast noncoding regions of the mouse genome for large-scale functional genomic analysis. To illustrate this approach, we first created loxP-containing loss-of-function alleles in the protocadherin alpha, beta and gamma gene clusters (Pcdha, Pcdhb and Pcdhg). Using these alleles, we show that, under proper guidance, Cre-loxP site-specific recombination can mediate efficient trans-allelic recombination in vivo, facilitating the generation of large germline deletions and duplications including deletions of Pcdha, and Pcdha to Pcdhb, simply by breeding (that is, at frequencies of 5.
View Article and Find Full Text PDFGelsolin is an actin-binding protein that regulates actin filament-severing and capping activity in the various processes of cell motilities. Here, we report the expression of gelsolin mRNA and protein in the hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that transcript of gelsolin was upregulated in a transient manner in the deafferented hippocampus by 1.
View Article and Find Full Text PDFThymosin beta4 is a major actin-sequestering molecule. Here, we report a prominent upregulation of thymosin beta4 in the hippocampus following entorhinal deafferentation. Northern blotting displayed a transient increase of thymosin beta4 mRNA in the deafferented hippocampus by 1.
View Article and Find Full Text PDFBrain Res Mol Brain Res
November 2005
SPARC is a matricellular protein that modulates cell-cell and cell-matrix interactions by virtue of its antiproliferative and counteradhesive properties. Here, we report the denervation-induced upregulation of SPARC mRNA and protein in the mouse hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that SPARC mRNA was upregulated in a transient manner in the deafferented mouse hippocampus.
View Article and Find Full Text PDFAbstract It has been widely demonstrated that Eph receptors and their ephrin ligands play multiple pivotal roles in the development of the nervous system. However, less is known about their roles in the adult brain. Here we reported the expression of ephrin-B1 and its cognate EphB receptors in the adult mouse hippocampus at 3, 7, 15, 30 and 60 days after transections of the entorhinal afferents.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2004
Based on the data from a cDNA microarray experiment which was carried out to screen the differential expressed genes in the rat hippocampus 10 days after removal of the entorhinal afferents, we confirmed the increase of expression of eight transcripts encoding protein osteonectin, thymosin-beta4, gelsolin, MHC I, MHC II, beta2-microglobulin, and interferon-gamma receptor using Northern blot. In situ hybridization revealed that the up-regulation of all these 8 transcripts localized specifically in the denervated target areas, the hippocampal stratum lacunosum-moleculare, and the dentate outer molecular layer. The results suggest that these molecules may have roles in the plasticity events in the hippocampus after entorhinal deafferentation.
View Article and Find Full Text PDFProfilin has been identified as an actin monomer sequestering protein and is thought to be a key regulator of actin polymerization in many fundamental cellular processes. We report the expression of profilin mRNA in the murine hippocampus following transections of the entorhinal afferents. Northern blot analysis showed that transcript of profilin was upregulated in a transient manner in the deafferented rat hippocampus by 1.
View Article and Find Full Text PDFBrain Res Mol Brain Res
December 2003
To search for gene expression changes probably responsible for deafferentation-induced reorganization in the brain, we have analyzed the expression of mRNAs for ephrin-A1, -A2, -A3, -A5 and -B1 in the rat hippocampus following transection of the entorhinal afferents by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). We found that their expression in the deafferented hippocampus increased significantly by 7 days, reached the maximum at 14 days and almost recovered to control levels by 60 days post-lesion. It is notable that the up-regulation of ephrin mRNAs occurs during the reorganization in the deafferented hippocampus, suggesting that ephrins may be involved in the plasticity events of the adult brain after lesion.
View Article and Find Full Text PDF