A tungsten disulfide (WS) nanosheet-based aptamer sensor was developed to detect patulin (PAT). The 5'-end of the PAT aptamer was modified with a cyanine 3 (Cy3) fluorophore, which self-assembled on WS nanosheets. The interaction between the Cy3 fluorophore at the 5'-end of the PAT aptamer and the WS nanosheets resulted in reduced fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFAn aptamer sensor based on manganese dioxide (MnO) nanosheets was developed for the detection of zearalenone (ZEN). The ZEN aptamer was modified at the 5'-end by a 6-carboxyfluorescein (6-FAM) fluorophore with self-assembly on MnO nanosheets. Interaction of the 6-FAM fluorophore at the 5'-end of the ZEN aptamer with the MnO nanosheet lowered fluorescence (FL) intensity due to fluorescence resonance energy transfer (FRET).
View Article and Find Full Text PDFHerein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye.
View Article and Find Full Text PDFHerein, we report a microporous carbon nanomaterial that was generated from a nanoscale covalent organic framework precursor via a simple pyrolysis approach. The obtained carbon-based nanoparticles possessed a broad NIR absorption capacity and exhibited a high level of photothermal conversion ability (η = 50.6%) in the NIR-II biowindow.
View Article and Find Full Text PDFHerein, we developed a multi-analyte fluorescence immunoassay for detection of three organophosphate pesticides (triazophos, parathion, and chlorpyrifos) in various agro-products (rice, wheat, cucumber, cabbage, and apple) using fluorescently labeled oligonucleotide and gold nanoparticle (AuNP) signal amplification technology. The AuNP probes for the three analytes were constructed by simultaneously modifying the corresponding antibodies and fluorescently labeled oligonucleotides on the probe surface. Three fluorophores (6-FAM, Cy3, and Texas red) with high fluorescence intensity and little overlap of excitation/emission wavelengths were selected.
View Article and Find Full Text PDFAn ultrasensitive bio-barcode competitive immunoassay method based on droplet digital polymerase chain reaction (ddPCR) was developed for the determination of triazophos. Gold nanoparticles (AuNPs) were coated with monoclonal antibodies (mAbs) and complementary double-stranded DNA (dsDNA), which included bio-barcode DNA and thiol-capped DNA. Magnetic nanoparticle (MNP) probes were constructed by modifying the MNPs with ovalbumin-hapten conjugates (OVA-hapten).
View Article and Find Full Text PDFWith the rapid development of nanotechnology, the bio-barcode assay (BCA), as a new diagnostic tool, has been gradually applied to the detection of protein and nucleic acid targets and small-molecule compounds. BCA has the advantages of high sensitivity, short detection time, simple operation, low cost, good repeatability and good linear relationship between detection results. However, bio-barcode technology is not yet fully formed as a complete detection system, and the detection process in all aspects and stages is unstable.
View Article and Find Full Text PDFA competitive bio-barcode immunoassay is described for the trace detection of parathion in water, pear, cabbage, and rice samples. It is based on amplification by platinum nanoparticle acting as a nanozyme. Gold nanoparticles (AuNPs) were modified with (a) monoclonal antibodies (mAbs) against parathion, and (b) thiolated single-stranded DNA (ssDNA) oligonucleotides.
View Article and Find Full Text PDFCultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F.
View Article and Find Full Text PDFA noncompetitive immunoassay based on gold nanoparticles (AuNPs) amplified capillary electrophoresis (CE) chemiluminescence (CL) detection was developed for the determination of carcinoembryonic antigen (CEA). In this method, citrate-modified AuNPs were conjugated with horseradish peroxidase (HRP) labeled CEA antibody (Ab*), and incubated with limited amount of CEA antigen. CEA-Ab*-AuNPs complex and excess of Ab*-AuNPs were then separated and quantified by CE with CL detection.
View Article and Find Full Text PDFA competitive immunoassay based on chemiluminescence resonance energy transfer (CRET) on the magnetic beads (MBs) is developed for the detection of human immunoglobulin G (IgG). In this protocol, carboxyl-modified MBs were conjugated with horseradish peroxidase (HRP)-labeled goat antihuman IgG (HRP-anti-IgG) and incubated with a limited amount of fluorescein isothiocyanate (FITC)-labeled human IgG to immobilize the antibody-antigen immune complex on the surface of the MBs, which was further incubated with the target analyte (human IgG) for competitive immunoreaction and separated magnetically to remove the supernatant. The chemiluminescence (CL) buffer (containing luminol and H(2)O(2)) was then added, and the CRET from donor luminol to acceptor FITC in the immunocomplex on the surface of MBs occured immediately.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
February 2005
For the first time, triadimenol was used to determine nucleic acid (DNA) using the resonance light scattering (RLS) technique. The RLS of triadimenol was greatly enhanced by DNA in the range of pH 1.6 to approximately 1.
View Article and Find Full Text PDF