Background: High tibial osteotomy (HTO) is a surgical procedure for treating certain knee conditions. Proper execution of HTO can preserve joint function and delay or avoid the need for total knee replacement. This study compared different 3D printing techniques (fused deposition modeling, selective laser sintering, and direct metal laser sintering) and a navigation system for their suitability in assisting HTO surgeries.
View Article and Find Full Text PDFBackground: This study introduced an Augmented Reality (AR) navigation system to address limitations in conventional high tibial osteotomy (HTO). The objective was to enhance precision and efficiency in HTO procedures, overcoming challenges such as inconsistent postoperative alignment and potential neurovascular damage.
Methods: The AR-MR (Mixed Reality) navigation system, comprising HoloLens, Unity Engine, and Vuforia software, was employed for pre-clinical trials using tibial sawbone models.
Given afferent functions, sensory nerves have recently been found to exert efferent effects and directly alter organ physiology. Additionally, several studies have highlighted the indirect but crucial role of sensory nerves in the regulation of the physiological function of osteoclasts. Nonetheless, evidence regarding the direct sensory nerve efferent influence on osteoclasts is lacking.
View Article and Find Full Text PDFIonic liquids (ILs) have emerged as versatile tools for interfacial engineering in perovskite photovoltaics. Their multifaceted application targets defect mitigation at SnO-perovskite interfaces, finely tuning energy level alignment, and enhancing charge transport, meanwhile suppressing non-radiative recombination. However, the diverse chemical structures of ILs present challenges in selecting suitable candidates for effective interfacial modification.
View Article and Find Full Text PDFBackground: Distal humerus fractures are a challenge to treat, and the current standard of care, open reduction internal fixation with a double-plate, has a high rate of complications. We proposed a novel internal fixation configuration, lateral intramedullary nail and medial plate (LINMP) and verified its rigidity through biomechanical tests and finite element analysis.
Methods: The study involved biomechanical testing of 30 synthetic humerus models to compare 2 different fixation systems for an AO 13C-2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi
August 2023
Objective: To review targeted muscle reinnervation (TMR) surgery for the construction of intelligent prosthetic human-machine interface, thus providing a new clinical intervention paradigm for the functional reconstruction of residual limbs in amputees.
Methods: Extensively consulted relevant literature domestically and abroad and systematically expounded the surgical requirements of intelligent prosthetics, TMR operation plan, target population, prognosis, as well as the development and future of TMR.
Results: TMR facilitates intuitive control of intelligent prostheses in amputees by reconstructing the "brain-spinal cord-peripheral nerve-skeletal muscle" neurotransmission pathway and increasing the surface electromyographic signals required for pattern recognition.
Background: Ultrasound is widely used for image-guided therapy (IGT) in many surgical fields, thanks to its various advantages, such as portability, lack of radiation and real-time imaging. This article presents the first attempt to utilize multiple deep learning algorithms in distal humeral cartilage segmentation for dynamic, volumetric ultrasound images employed in minimally invasive surgery.
Methods: The dataset, consisting 5,321 ultrasound images were collected from 12 healthy volunteers.
ACS Appl Mater Interfaces
April 2023
Groove patterns are widely used in material surface modifications. However, the independent role of ditches/ridges in regulating fibrosis of soft tissues is not well-understood, especially the lack of linkage evidence and . Herein, two kinds of combinational microgroove chips with the gradient ditch/ridge width were fabricated by photolithography technology, termed R and G groups, respectively.
View Article and Find Full Text PDFIn this article, a fractional-order differential equation model of HBV infection was proposed with a Caputo derivative, delayed immune response, and logistic proliferation. Initially, infection-free and infection equilibriums and the basic reproduction number were computed. Thereafter, the stability of the two equilibriums was analyzed based on the fractional Routh-Hurwitz stability criterion, and the results indicated that the stability will change if the time delay or fractional order changes.
View Article and Find Full Text PDFIntroduction And Importance: We used induced membrane combined with tissue-engineered bone (TEB) to repair the 14-cm juvenile ulnar defect formed after osteomyelitis debridement. The TEB was completely transformed into autologous bone after 4-year follow-up.
Case Presentation: A 13-year-old male was hospitalized because of right ulna chronic osteomyelitis.
Objective: A detailed analysis of the morphology of distal humeral articulation can help in the creation of anatomic prostheses of hemiarthroplasty. This study used statistical shape modeling to evaluate the 3D morphology of the distal humerus in healthy Chinese individuals and to investigate the proper articular morphology differences.
Methods: A statistical shape model (SSM) of the distal humerus was created using CT scans of 106 survey-confirmed nonpathologic elbows.
Development of nano-laponite as bioinks based on cell-loaded hydrogels has recently attracted significant attention for promoting bone defect repairs and regeneration. However, the underlying mechanisms of the positive function of laponite in hydrogel was not fully explored. In this study, the effect of 3D bioprinted nano-laponite hydrogel construct on bone regeneration and the potential mechanism was explored and .
View Article and Find Full Text PDF[This corrects the article DOI: 10.1016/j.bioactmat.
View Article and Find Full Text PDFIntroduction And Importance: This case report describes the reconstruction of the traumatic distal fibular and lateral malleolus defects with a novel method of using individualized 3D printed titanium prosthesis for the first time.
Case Presentation: A 63-year-old male farmer was hospitalized in emergency because of open injury and distal fibular and lateral malleolus defects in the left leg caused by a car accident. 3 months after debridement and latissimus dorsi muscle flap transplantation and skin graft operation, the patient re-hospitalized because of distal fibular and lateral malleolus defect and local pain.
The technique bottleneck of repairing large bone defects with tissue engineered bone is the vascularization of tissue engineered grafts. Although some studies have shown that extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (BMSCs) promote bone healing and repair by accelerating angiogenesis, the effector molecules and the mechanism remain unclear, which fail to provide ideas for the future research and development of cell-free interventions. Here, we found that Nidogen1-enriched EV (EV-NID1) derived from BMSCs interferes with the formation and assembly of focal adhesions (FAs) by targeting myosin-10, thereby reducing the adhesion strength of rat arterial endothelial cells (RAECs) to the extracellular matrix (ECM), and enhancing the migration and angiogenesis potential of RAECs.
View Article and Find Full Text PDFSchwann cells have been found to promote osteogenesis by an unclear molecular mechanism. To better understand how Schwann cells accelerate osteogenesis, RNA-Seq and LC-MS/MS were utilized to explore the transcriptomic and metabolic response of MC3T3-E1 to Schwann cells. Osteogenic differentiation was determined by ALP staining.
View Article and Find Full Text PDFThe potential translation of bio-inert polymer scaffolds as bone substitutes is limited by the lack of neovascularization upon implantation and subsequently diminished ingrowth of host bone, most likely resulted from the inability to replicate appropriate endogenous crosstalk between cells. Human umbilical vein endothelial cell-derived decellularized extracellular matrix (HdECM), which contains a collection of angiocrine biomolecules, has recently been demonstrated to mediate endothelial cells(ECs) - osteoprogenitors(OPs) crosstalk. We employed the HdECM to create a PCL (polycaprolactone)/fibrin/HdECM (PFE) hybrid scaffold.
View Article and Find Full Text PDFBackground: Tissue-engineered bone grafts (TEBGs) that undergo vascularization and neurotization evolve into functioning bone tissue. Previously, we verified that implanting sensory nerve tracts into TEBGs promoted osteogenesis. However, the precise mechanisms and interaction between seed cells were not explored.
View Article and Find Full Text PDFPercutaneous or transcutaneous devices are important and unique, and the corresponding biological sealing at the skin-implant interface is the key to their long-term success. Herein, we investigated the surface modification to enhance biological sealing, using a metal sheet and screw bonded by biomacromolecule fibrinogen mediated via pre-deposited synthetic macromolecule polydopamine (PDA) as a demonstration. We examined the effects of a Ti-6Al-4V titanium alloy modified with fibrinogen (Ti-Fg), PDA (Ti-PDA) or their combination (Ti-PDA-Fg) on the biological sealing and integration with skin and bone tissues.
View Article and Find Full Text PDFInjectable hydrogels have long been gaining attention in the bone tissue engineering field owing to their ability to mix homogeneously with cells and therapeutic agents, minimally invasive administration, and seamless defect filling. Despite the advantages, the use of injectable hydrogels as cell delivery carriers is currently limited by the challenge of mimicking the natural microenvironment of the loaded cells, promoting cell proliferation, and enhancing bone regeneration. To overcome these problems, we aimed to develop an injectable and -forming nanocomposite hydrogel composed of gelatin, alginate, and LAPONITE® to mimic the architecture and composition of the extracellular matrix.
View Article and Find Full Text PDF