Publications by authors named "Guoxia Jiang"

Adsorption capacity prediction, which needs to be based on the precise structure-capacity relationship, is important for better adsorbent design. However, the precise adsorption contribution coefficients of pores of different sizes for volatile organic compound (VOC) adsorption remain unclear. Herein, a control variable method is employed as a generative model to realize the numerization of the precise structure-capacity relationship.

View Article and Find Full Text PDF

Metal-modified catalysts have attracted extraordinary research attention in heterogeneous catalysis due to their enhanced geometric and electronic structures and outstanding catalytic performances. Silver (Ag) possesses necessary active sites for ethylene epoxidation, but the catalyst activity is usually sacrificed to obtain high selectivity towards ethylene oxide (EO). Herein, we report that using Al can help in tailoring the unoccupied 3d state of Ag on the MnO support through strong electronic metal-support interactions (EMSIs), overcoming the activity-selectivity trade-off for ethylene epoxidation and resulting in a very high ethylene conversion rate (~100 %) with 90 % selectivity for EO under mild conditions (170 °C and atmospheric pressure).

View Article and Find Full Text PDF

The internal floating-roof tank is the main type of storage tank for refined oil products. The volatile organic compounds (VOCs) emission from the internal floating-roof tank plays a dominant role in the unorganized emission source of the oil depot. In this study, we selected six typical oil depots in Beijing to investigate VOC emission characteristics from the tank top vent hole using infrared imaging technology and flame ionization detector (FID).

View Article and Find Full Text PDF

Natural food preservatives are being sought extensively as a safe alternative to chemical food preservatives. This study aimed to identify potential natural preservatives from herbs using single-photon ionization time-of-flight mass spectrometry (SPI-TOF-MS). Five species and four other herbs were analyzed, and the random forest (RF) algorithm was used to simulate olfaction and distinguish the species by identifying the characteristic peaks of volatile terpenoids (VTPs).

View Article and Find Full Text PDF
Article Synopsis
  • Modulation of water activation is essential for improving reactions that involve water in heterogeneous catalysis, particularly for the hydrolysis of organic sulfur compounds (COS and CS).
  • High temperatures above 310°C are often necessary for effective hydrolysis due to the strong O-H bond in water, which negatively affects sulfur recovery and pollution control in the Claus process.
  • Engineering oxygen vacancies in titanium-based perovskite catalysts improves water activation at lower temperatures (225°C), allowing for complete conversion of COS and CS while enhancing sulfur recovery efficiency and reducing emissions.
View Article and Find Full Text PDF

Endophyte resources have important research value in multiresistance breeding, ecological protection, germicide development, and other fields. In this study, high-throughput sequencing (Illumina-MiSeq) technology was employed to analyse the diversity and community composition of white radish () endophytes and rhizosphere bacteria in different compartments and cultivation conditions, including greenhouse and open field cultivation, at both the phylum and genus levels. Alpha diversity index analysis showed that the bacterial richness and diversity values of rhizosphere bacteria were higher than those of endophytes in different compartments.

View Article and Find Full Text PDF

TiO based photocatalyst with sufficient reusability for the degradation of water pollutants remains a challenge. Here, we report a composite chitosan-based aerogel containing TiO nanoparticles, multiwalled carbon nanotubes and layered silicate rectorite with sufficient mechanical strength for Rhodamine B degradation. The aerogels with homogeneous oriented lamellar structure were successfully prepared via a unidirectional freeze-casting technique.

View Article and Find Full Text PDF

A series of MgAl hydrotalcite-derived composite oxides were prepared by co-precipitation methods. The effects of calcination temperature, reaction temperature, water vapor volume fraction, and alkali metal addition on the hydrolysis activity of the samples were investigated. The crystal structure, specific surface area, pore structure, and basic position distribution of the composite oxides were characterized using XRD, BET, TPD, and XPS.

View Article and Find Full Text PDF

Natural-based nanocomposites are competitive and promising materials for biomedical applications due to their biocompatibility. Herein, a novel natural-based composite was fabricated by alternately depositing lysozyme (LY) and albumin egg (AE) on electrospun cellulose nanofibrous mats via layer-by-layer self-assembly (LBL) technology. To indicate the successful deposition process and investigate the variations of the mats during LBL process, the surface morphology, physical property, chemical composition, wetting behavior and thermal stability were systematically studied.

View Article and Find Full Text PDF

A series of well-mixed Ce-containing MgAlCe rare earth catalysts derived from layered double hydroxides were synthesized and tested for HS selective catalytic oxidation. Particularly, no chemisorption O-vacancies but intrinsic defect sites were present on catalyst surface. Significantly, the catalysts exhibited excellent catalytic activity, reasonable durability, and outstanding sulfur selectivity (100%) at relatively low temperatures.

View Article and Find Full Text PDF